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Preface 

There is one central reason why all neuroscientists and biopsychologists should be conver
sant with nonlinear dynamics. Nonlinear dynamics reveals and elucidates a range of phe
nomena that are simply inconceivable in the more mundane world of linear systems theory. 
Memory and forgetting, decision making, motor control, action potentials, and perhaps even 
free will and determinism can no longer be intelligently conceptualized without a basic 
understanding of nonlinear systems. At the deepest level, therefore, my decision to write this 
book was predicated on the belief that an understanding of brain function and behavior must 
be grounded in a conceptual framework informed by nonlinear dynamics. 

When I received my Ph.D. in theoretical chemistry in 1969 I was not familiar with many 
of the nonlinear dynamical phenomena developed in this book, and others such as chaos 
were just being discovered and understood by mathematicians. Theoretical chemistry and 
physics of the time did deal with nonlinearities, but the general approach was to hope that 
they were small and then expand solutions in a Taylor series retaining only the first few 
terms. When I was given the opportunity to switch my focus to mathematical biology by 
Stuart Rice, my Ph.D. advisor, and Jack Cowan, who offered me a postdoctoral position in 
the Department of Theoretical Biology at The University of Chicago, my awareness of non
linear dynamical phenomena began to expand immensely. 

As a result of this new exposure to nonlinear dynamics, I began to use these dynamical con
cepts in my own research on the visual system, and I designed a graduate level course in 1973 
to teach these concepts to others. For the first few years the course was populated by a combi
nation of theoretical biology, physics, and chemistry students. Then the physics and chemistry 
departments began offering this material to their students, so my course was discontinued. It 
was due to the recent upsurge of interest in neural modeling, connectionist and otherwise, that 
I decided to resurrect the course and restructure it to focus exclusively on neuroscience. Just 
as physicists are aided in learning mathematics by using examples such as oscillating springs 
and planetary motion, so I believe that neuroscientists can more easily grasp the mathematical 
concepts if examples involve action potentials, hysteresis in memory, and so on. 

Spikes, decisions, and actions is intended for three audiences: advanced undergraduates in 
neuroscience or physiological psychology, graduate students, and professionals in these 
areas who wish to develop neural simulations relevant to their own interests. When I speak 
of neuroscience here, I intend it in the broadest sense that encompasses cellular and molecu
lar neurobiology, systems neurobiology, psychophysics, and other fields where the object of 
study is the nervous system. As the book is based on a one-semester course that I have taught 
at the University of Chicago intermittently over the past 25 years, the book can readily be 
used in similar courses. In addition, the book may be used to supplement standard courses in 
advanced calculus, differential equations, or computer modeling when an introduction to 
nonlinear dynamics in biology is desired. 
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The mathematical background assumed by the book is a minimum of one to two years of 
calculus. Ideally, the reader will have been exposed to an introductory course on linear dif
ferential equations and some linear algebra. The essential material from such courses is out
lined in Chapters 1-3, which can be glossed over by the mathematically sophisticated reader. 
Chapter 4 on higher order linear differential equations contains material on time lags and the 
Routh-Hurwitz criterion for oscillations that will merit review by most readers. Following 
Chapter 5 on numerical methods (mainly Runge-Kutta), problems in nonlinear neurodynam-
ics are explored in an orderly sequence: multiple steady states and hysteresis, limit cycles, 
action potentials and bursting, chaos, neural synchronization, and Lyapunov functions. 
Finally, the cable or diffusion equation is presented as an avenue to dendritic potentials and 
compartmental neurons. Throughout, the mathematics is intermingled with the neuroscience 
of ionic currents, action potentials, motor control, and memory. 

The book is accompanied by a disk containing many MatLab™ scripts that are intended 
to complement the text. These simulations will help to solidify and elucidate analytic results 
and concepts derived in the text, and they should also enhance the utility of the book for self-
study. Beyond this, their inclusion brings the book closer to the realities of research in theo
retical neuroscience, where a combination of analysis and simulation is to be found in much 
of the best work. MatLab was chosen because the scripts will run on the Macintosh, UNIX, 
or Windows platforms. Also, MatLab is the most common simulation language in my own 
area, vision research. Most scripts will run in the student version of MatLab, but a few 
towards the end of the book may require larger arrays than the student version permits. A 
brief Appendix introduces the MatLab scripts and their use with this book. 

I have attempted to make the text as readable as possible by avoiding undue use of 
abstruse mathematical terminology. While this may annoy some who are mathematically 
sophisticated, it is my experience that most neuroscience students find this to be a more con
genial approach to difficult mathematical concepts. In the same vein, I have frequently writ
ten in the first person plural, using 'we' and 'us'. I hope this will encourage the reader to 
view this book as a journey of exploration we are taking together. 

A number of problems accompany each chapter. In addition, the text encourages the 
reader to explore different parameter ranges in many of the simulations, and this functions as 
a form of self-teaching problem. Given the MatLab simulations, it should be relatively easy 
for an instructor to create additional problems as desired. 

Mathematics texts inevitably suffer from a number of typographical errors, particularly 
because equations are so difficult to proofread. I have checked the book several times but 
take full responsibility for any remaining errors. To aid the reader, I shall list known errors 
and corrections on the web site: http://spikes.bsd.uchicago.edu. Readers discovering errors 
are requested to e-mail me at hrw6@midway.uchicago.edu, and I will post them on the web. 

In writing this book, I have done my symbolic derivations using Maple MathView™ soft
ware on the Macintosh. Use of this computer algebra and calculus software has been enor
mously valuable in minimizing errors in lengthy derivations. MathView™, Maple™, and 
Mathematica™ software are all of great value in conducting analytic manipulations, and 
readers familiar with any of these programs are encouraged to use them. 

Many individuals have contributed directly or indirectly to Spikes, decisions, and actions. 
First were my parents, Hugh and Georgine Wilson, who always encouraged me to find learn
ing exciting and to seek understanding. Two former professors at my alma mater, Wesleyan 

http://spikes.bsd.uchicago.edu
mailto:hrw6@midway.uchicago.edu
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University, deserve special mention. Tom Tashiro, a Shakespearian scholar, taught me about 
the relationship between data and theory through historical examples. Gilbert Burford, 
Professor of Physical Chemistry, showed me how rich and elegant the interplay between 
mathematics and science could be. At The University of Chicago, Stuart Rice, my thesis 
advisor, and Jack Cowan, my postdoctoral mentor, are the two individuals responsible for 
introducing me to mathematical approaches in biology and neuroscience. I am particularly 
grateful to Jack Cowan for introducing me to mathematical theories of neural functions, thus 
setting me on the career path I have followed since. I am indebted to Suzanne Weaver Smith 
from the University of Kentucky and to my lifelong friend Bob Morris from the University 
of Massachusetts for reading substantial portions of the book and providing invaluable feed
back. Thanks are also due to Tony Marley of the McGill University Psychology Department 
for providing me with a very hospitable sabbatical environment in 1995-1996 during which 
this book was begun. The development of this book has benefitted from comments and ques
tions by many former students involved with my nonlinear dynamics course over the years at 
The University of Chicago. Among these are Michael Hines, Jim Bergen, Bard Ermentrout, 
Charlie Smith, Bill Swanson, Sidney Lehky, Jeounghoon Kim, and Li-Ming Lin. 

Finally, my deepest gratitude goes to my wife, Frances Wilkinson of McGill University, to 
whom this book is dedicated. I could never have succeeded in such a prolonged writing 
enterprise without her support, encouragement, and critical comments as work progressed. 

Chicago H.R.W. 
1998 
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1 Introduction 

1.1 Nonlinear dynamics in neuroscience 

The nervous system of all higher animals is inherently both highly complex and highly 
nonlinear. The complexity is most obvious from consideration of the enormous number 
of neurons and synapses in the brain: the human brain is comprised of approximately 
1012 neurons and over 1015 synapses! Brain nonlinearity becomes evident from equally 
striking observations. Nerve cells have a threshold for producing spikes or action 
potentials, the fundamental events of almost all neural signaling. Thus, weak stimu
lation has no effect yet several weak stimuli together produce a dramatic spike 
response. To cite another example, changing from a walk to a trot or gallop requires 
switching among dynamical modes (switching gears) in a nonlinear motor control 
network. More generally, all higher nervous systems make decisions between alter
native courses of action, and decision making is an inherently nonlinear process. We do 
not act upon the average among alternatives; we act upon the winner among competing 
alternatives. Spikes, decisions, and actions is an exploration of the nonlinear math
ematical principles by which brains generate spikes, make decisions, store memories, 
and control actions. 

Despite the enormous complexity of the brain, a major goal of neuroscience (and 
indeed all science) is to understand and predict change: changes in neural firing rates 
caused by altered ionic concentrations; changes in behavior resulting from altered 
neural activity. Dynamics is the name given to the mathematics devoted to studying 
change, to predicting the future given knowledge of the present. The foundation of 
dynamics is the differential equation. Differential equations are based on a simple 
concept: knowledge of the present state of a system can be used to predict how it will 
evolve during the next instant of time. By repeating this predictive process from instant 
to instant, differential equations permit us to build up a picture of the future behavior 
of any system. 

The motivation for introducing the neuroscientist to nonlinear dynamics should now 
be clear: it is the most powerful analytic tool available to us for understanding and pre
dicting behaviors of complex systems. This became apparent as early as 1952, when 
Hodgkin and Huxley developed the highly nonlinear differential equations that predict 
the generation of action potentials in neurons (Hodgkin and Huxley, 1952). Since that 
time dynamical systems theory has been effectively employed in understanding and 
predicting the responses of vertebrate photoreceptors to light (Schnapf et ai, 1990), the 
behavior of neural networks that control swimming (Ekeberg, 1993), the neural dynamics 
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underlying light adaptation in the retina (Wilson, 1997), and many other neural 
phenomena. 

In addition to providing a powerful analytic tool, nonlinear dynamics will also intro
duce the neuroscientist to important new concepts and phenomena that simply cannot 
occur in linear systems. One of these is the limit cycle oscillation (Chapters 8 and 9), which 
may fairly be said to be the foundation of all biological and neural oscillatory behavior. 
Indeed, an understanding of limit cycles is necessary to both the scientist who would 
understand the ionic basis of action potentials and to the neuroscientist studying motor 
control at the network level. Systems with multiple equilibrium points (Chapter 6), which 
enable the system to categorize its inputs, make decisions, and perform short-term 
memory functions, are another concept unique to nonlinear dynamics. Finally, there is 
the notion of chaos, which is sufficiently fascinating to have captivated the popular press. 
Chaotic systems (Chapter 11) are ones which are perfectly predictable in principle but yet 
seem to behave in a highly unpredictable fashion, almost as though they possessed a 
modicum of free will! Chaos, too, is a dynamical phenomenon unique to nonlinear sys
tems. Acquaintance with these and other nonlinear concepts will enrich the arma
mentarium of the contemporary neuroscientist whether or not her/his main focus 
is mathematical. In addition, nonlinear dynamical concepts are highly relevant to 
neuroscience-oriented discussions of philosophy of mind (e.g. Churchland, 1989), as 
will be emphasized by occasional asides in the text. 

It has sometimes been claimed that nonlinear dynamical systems are just too complex 
to be adequately understood using available mathematical techniques. For example. 
Green (1976, p. 33) stated: '[Nonlinear] systems are sometimes almost inscrutable.' While 
this comment may have been justified earlier in the century, it is simply no longer true with 
respect to the types of nonlinearities inherent in the nervous system. A major goal of this 
book is to provide neuroscientists with the background necessary to appreciate the 
sophistication and processing power of neural nonlinearities. By restricting treatment 
to just those types of nonlinearities that are most relevant to neuroscience, it is possible to 
give a treatment of nonlinear dynamics that is succinct and yet sufficiently general to 
enable one to begin applying these powerful techniques in one's own research. Indeed, the 
title of this book. Spikes, decisions, and actions, reflects the importance of nonlinear 
dynamics at all levels from spike generation to the level of networks that make decisions 
and control actions. 

Sometimes experimentalists who are resistant to theory claim that there is little to learn 
from models, because they believe we obtain no results other than those we consciously 
design into our models. While this may be more or less true for linear models due to their 
simplicity, it is demonstrably false in the case of nonlinear models. The Hodgkin-Huxley 
(1952) equations provide a classic example. More than 25 years elapsed before Rinzel 
(1978) and Best (1979) predicted from a mathematical analysis of these highly nonlinear 
equations that they should exhibit hysteresis. Even more counter-intuitive was the pre
diction that a brief depolarizing current pulse should permanently extinguish an ongoing 
spike train if delivered at the proper phase. Both predictions were experimentally verified 
by Guttman, Lewis, and Rinzel (1980) the next year. Furthermore, the Hodgkin-Huxley 
(1952) equations were published years before chaos was characterized by mathemat
icians. Yet in 1987 it was predicted and experimentally verified that the squid axon should 
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exhibit chaos (Degn et ai, 1987). Thus, the Hodgkin-Huxley (1952) equations correctly 
predicted several novel phenomena that were clearly not conceived of by Hodgkin or 
Huxley in designing their equations. 

One might argue that the ready availability of desktop microcomputers has made 
the study of nonlinear dynamics irrelevant: one need only approximate solutions of 
equations to study their behavior. This viewpoint rests on several major misconceptions, 
however. First, one is unlikely to have any idea what form the equations appropriate to a 
particular phenomenon might take without a grounding in nonlinear dynamics. Second, 
even when the relevant equations are already known, it is very difficult to determine how 
solutions depend on parameter values without knowledge of dynamical techniques. 
Finally, a knowledge of nonlinear dynamics is required if one is to be certain that one's 
computer approximations actually reflect the true dynamics of the system under study. 

Having said this, it must certainly be acknowledged that computer simulations provide 
an extremely valuable and powerful tool for the neuroscientist. Accordingly, another goal 
of this book is to teach precisely those analytical techniques that will enhance the power 
and sophistication of neural simulations. To this end I have included numerous computer 
simulations of single neurons and small neural networks throughout the book. The goal 
of these is both to enable the reader to explore dynamical phenomena that are discussed in 
the book and to learn to apply analytical techniques to the understanding of network 
simulations. MatLab™ scripts for these simulations are contained on the accompanying 
disk. In addition, computers have enhanced the utility of some techniques and removed 
the drudgery from others. Accordingly, MatLab scripts are included to produce symbolic 
solutions to second order linear differential equations and to facilitate application of 
stability criteria to higher order systems. There is no point in doing by hand what a 
computer can do faster and more accurately. 

Currently, 'connectionist' neural networks are very much in vogue, and a number of 
excellent texts already exist in this area (e.g. Hertz et ai, 1991). This book is not intended 
to compete with these but rather to complement them. Connectionism today is concerned 
with somewhat artificial neuron-like networks that can be trained (by back-propagation, 
for example) to associate and categorize stimuli. My emphasis will be on smaller, deter
ministic neural networks that are more biological in their behavior. Furthermore, the 
nonlinear analysis in this book provides much of the mathematical background upon 
which connectionist neural modeling has been built (see Chapter 14). It has been 
my experience that many students who are attracted to connectionist modeling have 
strong computer science backgrounds but rather little understanding of the nonlinear 
dynamics upon which their modeling is based. I hope that this book will help to rectify the 
situation. 

1.2 Neuroscience and levels of abstraction 

As in any branch of science, there are many different levels of abstraction at which a 
neuron or neural network may be described. At the most abstract level, a neuron may be 
described as a device that is either on or off (1 or 0). This was the description introduced 
by McCulloch and Pitts (1943) in their classic paper: 'A logical calculus of ideas immanent 
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in nervous activity'. At a more detailed level, a neuron may be described by its spike rate, 
which varies continuously between zero (when the postsynaptic potential is below 
threshold) and some maximum value at which the spike rate saturates due to the absolute 
refractory period. A yet more detailed neural description is provided by the Hodgkin-
Huxley (1952) equations, which describe the generation and shape of each individual 
action potential as a function of the underlying ionic currents. Finally, the most detailed 
descriptions incorporate the detailed geometry of the dendritic tree along with the spatial 
distribution of synapses and ion channels on the dendrites. This, of course, is not the end 
of the line: one could frame one's neural simulations at the level of quantum mechan
ical changes in ion channel gating molecules. However, contemporary neuroscience 
seldom goes so far: neural reductionism generally stops with the belief that quantum 
mechanical effects will either average out or else manifest themselves as statistical 
fluctuations. 

Different levels of generality in the description of neurons are appropriate for different 
purposes, as is illustrated in Fig. 1.1. Generally speaking, the more detailed the 
description of individual neurons, the smaller the number of neurons that can be effect
ively modeled. As different types of neural experimentation produce data reflecting 
activity of widely varying neural populations, however, several different levels of 

Levels of Abstraction in Neuroscience 
Level Number of Neurons Typical Data 

Macromolecular 
Quantum Mechanics 

Individual 
Ion Channel 

Vastly < 1 

Fraction of membrane _n_ji n_ 
Channel opening & closing 

Individual 
Action Potentials 

Neural Spike Rates 

PET, fMRI & 
Evoked Potentials 

1 -10 
(1-10,000 for modeling) 

1-100 
(10-106 for modeling) 

Spike trains 

QHW 
Post stimulus time histogram 

105• 109 

Activated brain region 

Fig. 1.1 Different levels of abstraction used to describe neurons and neural networks. Each level is 
applicable to different network size. 
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abstraction are clearly relevant in theoretical neuroscience. For example, in my own work 
on visual system function, neural descriptions at the level of spike rates have proved to be 
extremely useful in simulating motion perception (Wilson and Kim, 1994), retinal light 
adaptation (Wilson, 1997), and aspects of cortical function (Wilson and Cowan, 1973). 
On the other hand, a scientist interested in intracellular recordings from individual 
neurons would surely require a much more detailed level of description. The material in 
this book encompasses three levels of neural description. The most general level is that of a 
neural network in which each neuron is represented by a continuous variable describing 
its varying spike rate. This level of description is adequate for simulating many aspects of 
categorization, decision making, short-term memory, and motor control. Description of 
a neuron by its spike rate is comparable to representation of responses by post-stimulus 
time histograms in the experimental literature (see Fig. 1.1). The next level of description 
focuses on the generation of spike trains produced by multiple ionic currents. This is the 
level of analysis of Hodgkin-Huxley and related equations. Finally, the most detailed 
level incorporates diffusion of ionic potentials along dendrites with complex geometry. 
Each of these levels of abstraction is appropriate for some theoretical purposes but 
inappropriate for others. An appreciation of the conditions under which each may be 
optimal will emerge from the chapters that follow. 

1.3 Mathematical background 

This book is intended to be useful to anyone who has completed one to two years of 
calculus and who is also familiar with some of the basics of vectors and matrices. A 
semester of linear differential equations would also be very helpful. The single most 
important concept from calculus is that of the exponential function and its derivative, 
which describes processes of growth and decay. To fix these ideas, suppose that a colony 
of microorganisms has population Fat the beginning of an experiment. If the fraction of 
organisms that reproduce per unit time is k, then increases in the population will be 
described by the differential equation: 

This just states that the rate of change of the population, dF/dt, is proportional to the 
current population level F. As we shall see in the next chapter, eqn (1.1) is solved by the 
exponential function, which we shall now derive. 

1.3.1 The exponential function 

All scientists are familiar with the exponential function e', where e = 2.71828 — How
ever, it is frequently forgotten that e is actually determined by the solution to a differential 
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equation. To see the central importance of e to differential equations, let us consider the 
differential equation satisfied by e': 

^ = e< (1-2) 
dt 

This equation states that e is the unique constant such that the function e' is its 
own derivative. To see the consequences of this, first consider the definition of the 
derivative: 

de' e'+/' - e' 
^ = l i m ^ — — (1.3) 
dt h^o h 

Using the observation that a'+h = a'a1' for any positive a, h, and /, we deduce: 

lim —- = e ' l i m ^ - ^ (1.4) 
A^O h A-0 It 

Substitution of (1.4) and (1.3) into (1.2) yields the result: 

eA - 1 
lim-—— = 1 (1.5) 
A-o h 

Although the actual derivation is somewhat complex, it can now be shown that the value 
e satisfying (1.4) is given by: 

e = l im(l+/i) , / ' ' (1.6) 

The value of e may be approximated to any desired accuracy using (1.6). For example, 
h= 1/10 and h = 1/1000 yield: 

10 

e « ( l + - =2.5937 

x 1000 

= 2.7169 

•7) 

1000 

Thus, the value of e is determined by the differential equation (1.2). In the chapters that 
follow, the exponential function will be seen to provide the basis for analyzing virtually all 
differential equations of scientific interest. 
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1.3.2 Taylor series 

A second very important concept is that of a Taylor series expansion. We shall frequently 
make use of the fact that near t = a, a function /?) may be approximated by: 

f\t) ^f(a) + h ^ l + ^ ^ l + (higher order terms) (1.8) 

In this expression, /and its derivatives are evaluated at t = a, and h = t - a is the distance 
from a. The first two terms on the right of (1.8) describe the straight line tangent t o / a t 
? = a, while the next term represents the curvature of/. This formula will enable us to 
simplify nonlinear functions so as to gain insights into their properties, and the formula 
will also be instrumental in our development of computer approximations to the solutions 
of nonlinear differential equations. 

To derive (1.8), suppose we wish to approximate a function/?) near t = 0. One of the 
simplest approximations is a polynomial in t. So, let us approximate/?) as: 

/(?) w a + bt + ct2 + higher powers (1.9) 

To determine the coefficients a,b,c, etc., let us choose an approximation that has 
derivatives identical to those o f / a t point t = 0. First we evaluate b o t h / / ) and our 
polynomial at t = 0, with the result/0) = a. This guarantees that/?) and our polynomial 
have the same value at ? = 0. Next, we differentiate both/?) and the polynomial and then 
evaluate both at ? = 0. This gives: 

J. = b + 2ct = b for? = 0 (1.10) 
d? 

Similarly, taking second derivatives of both sides of (1.9) and evaluating them at ? = 0 
gives: 

K = 2 f (1.n, 
If we now replace a, b, and c in (1.9) by the values obtained from (1.10) and (1.11), we 
obtain the polynomial approximation to /? ) : 

/ ? ) « / 0 ) + ^ P ? + ^ ^ - p ^ r + higher order terms (1.12) 

This polynomial is called the Taylor series approximation to /? ) . It is easy to generalize 
this approach to show that the «th term must be: 

„thterm = I « r - (1.13) 
n\ dt" v ; 
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As one simple example, note from eqn (1.2) that the derivative of e' is 1 at ? = 0, and 
indeed all derivatives of e' are also equal to 1 at ? = 0. So the Taylor series for e' to fourth 
order near ? = 0 is just: 

^•+'444 (L14) 

Although this gives the exact value of e' only at ? = 0, it is still reasonably accurate at 
? = 1, where it produces e « 2.7083, within 0.5% of the true value. 

1.3.3 Imaginary exponents 

A final aspect of exponential functions that will be of importance in our study of dif
ferential equations is expressed by Euler's formula: 

e"" =cos(a?) + /sin(a?) (1.15) 

where ;' = \f—\. In other words, e with an imaginary exponent is equivalent to a com
bination of sine and cosine functions. Based on this equation, we shall see that sines and 
cosines provide a foundation for understanding neural oscillations. 

A simple derivation of (1.15) can be sketched out based on Taylor series. Let us 
approximate exp(/a?) near ? = 0 by a fourth order Taylor's series: 

(at)2 . ( a ? ) 3 , (at)4 

/—— 
~i 24 

p-^ViU-tf 
The second step is simply a grouping of the real and imaginary parts of the series sep
arately. If you now compare the series for the real part of (1.15) with the Taylor series for 
COS(Q/), you will discover that they are identical. Similarly, the imaginary part of the 
Taylor series expansion in (1.1 5) is identical to the Taylor series for sin(a?). This sketches 
a proof of (1.15), although more sophisticated proofs are available from complex variable 
theory. 

1.4 Neurobiology background 

In addition to the calculus concepts outlined above, this book assumes that the reader has 
some basic knowledge of neurobiology. This background is contained in several excellent 
introductory texts, such as Neurobiology by Shepherd (1994), Neurons and Networks by 
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Dowling (1992), or Foundations of Neurobiology by Delcomyn (1998). In this respect. 
Spikes, decisions, and actions is analogous to the many applied mathematics texts written 
for physics students. Those books choose their mathematical examples on the assumption 
that the reader has some understanding of springs, gravitation, etc. The examples I shall 
choose assume a basic knowledge of neuron morphology (axon, soma, synapse, etc.) and 
physiology (ion channels, resting potentials, action potentials) at the level offered by the 
books above. 

For reference, a microscope drawing of a cortical neuron from Cajal (1911) is presented 
in Fig. 1.2. Briefly, other neurons make localized contacts with this particular neuron at 
chemical synapses located throughout the dendrites (or dendritic tree) and also on the cell 
body or soma. These synapses may be either excitatory (electrically depolarizing) or 
inhibitory (generally electrically hyperpolarizing). Electrical changes produced at all the 
synapses that are simultaneously active then propagate to the soma, thus producing a net 
postsynaptic potential. If the postsynaptic potential at the soma is sufficiently large to 

Soma 
(cell body) 

Axon 
hillock 

Dendrites 

Fig. 1.2 Diagram of a cortical pyramidal cell from Cajal (1911). Dendrites (thick processes) emanate from 
the soma or cell body and are the site of synaptic contacts from other neurons. The thin axon is connected to 
the soma at the axon hillock, which is the site of action potential generation. Axons typically have many 
branches (several shown) and may cover very long distances before they contact other nerve cells at synapses. 
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Fig. 1.3 Diagram of a two-neuron negative feedback network. Throughout the book excitatory synapses 
will be indicated by arrowheads, and inhibitory synapses will be indicated by solid circles. 

exceed a threshold value, typically a depolarization of 10-15 millivolts (mV), the neuron 
generates a brief electrical pulse, known as a spike or action potential at its axon hillock. 
The axon hillock is the point of connection between the soma and the axon, which is a long 
thin process leading off from the soma and ultimately terminating in synapses on other 
neurons. Axons range in length from less than one millimeter to almost a meter, 
depending on the location and identity of the particular neuron. Spikes generated at the 
axon hillock subsequently propagate down the axon and produce chemical signals at 
the synapses. Depending on the level of activation, neurons can fire spikes at rates 
varying from less than one per second up to around 1000 per second (1000 Hz). This 
extremely brief synopsis can be fleshed out by examining the relevant chapters in any of 
the references cited above. Many of these neural events will be analyzed in dynamical 
terms later in this book. 

Many examples in the book involve interactions among several neurons in a network. 
In these cases a diagram will frequently be provided to help interpret the mathematical 
equations. Such diagrams follow the conventions illustrated in Fig. 1.3. This figure shows 
a simple feedback circuit between two neurons. Here the excitatory neuron E sends an 
axon collateral (arrow) to stimulate the inhibitory neuron I. This neuron in turn provides 
feedback inhibition to E. Throughout the book excitatory synapses will be represented by 
arrowheads, and inhibitory synapses by solid circles. 

1.5 Scope and plan of book 

Given the background outlined above, this book has the goal of developing those skills 
that are essential in applying nonlinear dynamics to problems in neurobiology. Thus, 
Spikes, decisions, and actions is intended to provide the mathematical background for 
works such as Methods in Neuronal Modeling by Koch and Segev (1989). While this may 
be an ambitious goal, it is my belief that a carefully selected and coherent body of 
mathematical theory can provide the basis for understanding the vast majority of 
techniques employed by contemporary neural theorists. In order to provide this core 
of mathematical theory as concisely as possible, many topics typically taught in 
undergraduate courses in differential equations have been omitted. The instructor or 
advanced reader will note that there is no discussion of equations with time-varying 
coefficients or Laplace transforms. However, this does not reduce the utility of the book 
for neuroscientists. Laplace transforms have little relevance to nonlinear dynamical 
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systems. Time-varying parameters, however, are really a version of nonlinear dynamics in 
disguise. The time variation may always be rewritten using multiplicative variables that 
satisfy their own differential equations. For example: 

d.v 1 
— = - x (1.17) 
d? 1 +? v ' 

is equivalent to the system of equations: 

d.v 
d 7 = v v 

dy 2 

dt = ~y 

.18) 

withy= 1 at time? = 0. (The reader may verify this by substituting y = 1/(1 +?)intothe 
second equation.) Equations in which the independent variable ? does not appear expli
citly in any of the parameters are said to be autonomous systems. (We will, of course, deal 
with the case where the stimulus to a neuron or network is time-varying.) 

The plan of the book is straightforward. In order to understand nonlinear dynamics, 
one must first grasp certain fundamental aspects of linear dynamics. These are contained 
in Chapter 2, which discusses first order linear systems, and Chapters 3 and 4, which 
extend the analysis to second and higher order linear systems. Before delving into non
linear differential equations, Chapter 5 develops techniques for simulating dynamical 
systems on the computer, the focus being on Runge-Kutta methods. Chapters 6 and 7 
introduce the analysis of nonlinear neural systems with multiple equilibrium points, and 
Chapter 8 focuses on limit cycle oscillations in simple neural systems. With this back
ground. Chapter 9 analyzes equations for action potential generation related to the 
Hodgkin-Huxley equations, and Chapter 10 extends this to bursting neurons controlled 
by limit cycles within limit cycles. Chapter 11 provides a brief introduction to neural 
chaos. Neural synchrony and motor control (with the lamprey swimming oscillator 
as a prime example) are covered in Chapters 12 and 13. Chapter 14 provides a brief 
introduction to Lyapunov function theory with applications to long-term memory. 
Chapter 15 provides an introduction to the one partial differential equation of greatest 
relevance to neuroscience: the diffusion or cable equation. This represents a straight
forward extension of the foregoing material, as the method of separation of variables 
reduces the diffusion equation to ordinary differential equations. Applications to den
dritic and action potential propagation, as well as compartmental neurons, are explored. 
Finally, Chapter 16 concludes with a resume of general principles underlying nonlinear 
neural dynamics. 

MatLab scripts are included with this book to enable the reader to simulate all of 
the examples in the text without spending excessive time programming. In addition, 
many exercises at the end of chapters can be approached by making small modifications 
in the MatLab programs provided. MatLab was chosen because it is widely used by 
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neuroscientists and because the same script will run on the Macintosh, Windows, and 
under UNIX. Although the MatLab simulations are not essential for readers with 
sophisticated mathematical backgrounds, they should be quite valuable to the neu
roscience student exploring nonlinear dynamics for the first time. 

I have always found nonlinear dynamics to be conceptually rich and fascinating, and I 
have truly enjoyed writing Spikes, decisions, and actions. I sincerely hope the reader will 
find the book exciting as well as informative. 



First order linear differential 
equations 

A differential equation describes the change in neural responses (or ionic concentrations, 
etc.) between the present time ? and a time (? + d?), which lies infinitesimally in the future, 
and it describes this change as some function of all the physiologically relevant variables 
at time ?. The order of a differential equation is defined as the highest derivative present in 
the equation. As will be seen in the next chapter, this is equivalent to the number of 
coupled first order equations in a system of differential equations. In this chapter I 
introduce the simplest differential equation of major importance in science: the first order 
linear differential equation with constant coefficients. Solutions of this equation form the 
basis for understanding higher order equations, both linear and non-linear. Despite its 
linearity, however, the first order equation is still capable of describing the spike rate of a 
single neuron in response to stimulation, and we shall see that it can also describe 
interactions between postsynaptic potentials. 

2.1 The fundamental first order equation 

Let us begin our treatment of differential equations by considering the simplest, yet most 
fundamental of all differential equations in the sciences: 

d.v 1 
- T - = - - - V 2.1 

d? r 
This equation states that the rate of change of the function x(t) as a function of time ? is 
equal to a constant times the function itself. The time constant, r, can be shifted to the left 
side of the equation by simple multiplication, but the form (2.1) will be useful for our 
present purposes. The temporal units of r are the same as ? (i.e. milliseconds, ms, or 
fraction of a second). We can solve (2.1) by substituting an exponential function and then 
making use of its derivative from (1.2): 

x(t) = Aec", so ~ = Aazc" y ' dt 

Substitution of this into (2.1) leads to the result: 

Aaeal = --ea 

T 



14 Spikes, decisions, and actions 

This equation is easily solved to give a = - l / r , so the solution to (2.1) is just 
x = A exp(-?/r). The minus sign on the right side of (2.1) results in a negative value for 
the exponent in the solution (r is always positive by convention). As a negative exponent 
is generally the most appropriate physiological solution, it has been emphasized, 
although the same derivation obviously holds for positive values on the right-hand side. 
The constant A may be assigned any value we wish. To determine a unique value of A, we 
need to specify an initial condition, namely, a value for .v(?) at ? = 0. Denoting this value 
by A0 and substituting into the solution at ? = 0, we see that the solution to (2.1) is: 

.v(?)=.v0e-'^ (2.2) 

Let us now consider a somewhat more complex equation in which the right-hand side 
contains an arbitrary additive function S(t). As we shall see shortly, this may be thought 
of as a time-varying stimulus applied to a neuron which responds with spike rate x(t). The 
relevant equation is: 

^ = l ( - v + 5(?)) (2-3) 
d? T 

Equation (2.1) is referred to as a homogeneous differential equation, because the right side 
only contains terms involving the unknown function x. Equation (2.3), on the other hand, 
is termed inhomogeneous, because the right-hand side contains an additional term that is 
independent of .v. To solve (2.3), let us try to find a solution of the form: 

x = Ae~'/T + H(t)e-'/T (2.4) 

This is just the solution we obtained to (2.1) plus an additional function of time, H(t), 
multiplied by the exponential that was obtained from solving (2.1). 

Substitution of (2.4) into (2.3) yields: 

e_f/T dtf _ 1 e_ f / r + He_lf = 1 _ A g_,/T _ / / e _ , / T ) 

dl T T 

Cancellation of the second and third terms on both sides gives: 

d? T 

This may be solved for //(?) by integration with the result: 

/ / ( ? ) = - / e'' /T5(?')d?' (2.5) 
T Jo 

The last step results from isolating dHjdt on the left and then integrating both sides of the 
equation. This integration is carried out with respect to the 'dummy variable' ?', which 
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represents all past times between the start of stimulation at ? = 0 and the present time ?. 
Combining (2.2), (2.4), and (2.5), we have proved the theorem: 

Theorem 1 

is 

or 

where A is 

The solution to the equation: 

d.v 1 

.v(?) = ^ e - ' / r + - e - ' / T 

x(t)=Ae-'/T + - [ e" 
TJo 

S(t)) 

/ > 

-C-'')/ 

chosen to satisfy the initial condition. 

TS{t 

~S(t 

')d?' 

)d?' 

To obtain the second form for x(t) in this theorem, the exponential has simply been moved 
inside the integral. Many readers will recognize the integral in the solution as a temporal 
convolution integral. This convolution adds up effects throughout the past history of 
stimulation, S(t'), weighting each past instant ?' by an exponentially decaying function 
of the elapsed time between ?' and the present, exp{ —(? - t')/r}. Thus, the influence 
of all previous stimulation is summed, but it dies out exponentially as we move further 
into the past. 

To fix ideas, let us apply Theorem 1 to an example. For time in milliseconds, solve the 
equation: 

for an initial condition .v(0) = 0. Using Theorem 1 we obtain: 

.Y(?)=^e- ' / | 0 + ^ / "e - ( ' - ' ' » / , 0 50d? ' 
10 7o 

The integral is easily evaluated with the result: 

1 f e-(«-i')/io50dr/ = 5e-«/w f e'V'Od/' = 50 ( l - e - ' / ' 0 ) 
10 J0 Jo 
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Fig. 2.1 Solutions of equation in text for two different initial conditions. 

Therefore: 

x(t) = At •(/10 + 50(1 - e - < / 1 0 \ 

At / = 0, x = A, so the initial condition will be satisfied if A = 0. This produces the 
solution: 

A(?) = 5 0 ( 1 - e - ' / l 0 ) 

As a second case, let us solve the same equation again but with a different initial condition: 
.Y(0) = 70. Now A =10 and 

x(t) = 70e • , /1" + 50( 1 - e- ' / l 0) = 50 + 2 0 e - ' / l u 

Both of these solutions are plotted in Fig. 2.1, where it is easy to see that x(t) approaches 
the value 50 with a decaying exponential time course. The time constant for this approach 
is 10 ms, and it is apparent that the solution has virtually reached its asymptotic value by 
? = 40ms, i.e. within about 4 time constants. This is because e~4 = 0.018, within 2% of 
the asymptotic value. 

To take another example, let us solve the following equation for .v(0) = 0: 

dx _ 1 

d 7 ~ 2 0 ( -.\- + 40e -i/20\ 

Using Theorem 1, we obtain: 

A e '/a» + 40 e-,/20 I" e,</20 e-i'/20 dt, = A c-,/20 + 2r e- , / :o 
20 Jo x t 
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Fig. 2.2 x(t) (solid line) in response to the time-varying stimulus plotted by the dashed line. 

As x(0) = 0, the solution is: 

A-(?)=2?e-'/2° 

This function is graphed in Fig. 2.2. Note that the response x(t) overshoots the stimulus 
S(t) and then follows its exponential decay. 

2.2 Cascades of first order equations 

There are many physiological circumstances in which one first order differential equation 
provides the input to a second, the second to a third, and so forth. Frequently it is assumed 
on the basis of experimental evidence that each equation has the same time constant r as 
the others. This is known as a cascade of equations, and it generally arises when there is a 
chain of chemical steps between an initial event and a final measured neural response. For 
example, the electrical response of photoreceptors known as rods in the primate retina are 
well described by a three-equation cascade. Let us derive the solution to such a cascade for 
the rod with stages x, y, and z obeying the equations: 

dx _ 1 
d? r 
d.v _ 1 
d? T 

d r _ \_ 
d? T 

(-v + kx) 

i-z + ky) 

(2.6) 

We will assume that several light quanta have just been captured so that x(0) = 1, but 
y(0) = 0, z(0) = 0. The constant k describes amplification by biochemical events in the 
rods. This is actually a third order differential equation (see Chapter 3), but it is so simple 
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that we can solve it exactly using Theorem 1. We already know the solution to the first 
equation, which we can then substitute into the second equation: 

x(t)=e-'/T so 

dt T 

(2.7) 

The equation for y is now just a more general case of our last example, and we can again 
solve using Theorem 1 to get: 

ytt) = k- e"' / r (2.8) 

Substituting this expression for v in the final equation in (2.6) and again using Theorem 1 
gives our final result: 

k2 ( t\2 

m = T l - i e 
•l/r (2.9) 

Thus our three-equation cascade in eqn (2.6) produces a response proportional to ?2 

for small ?. In comparing data with eqn (2.9) it is usually convenient to plot the data on 
double logarithmic coordinates, because these coordinates transform the rising phase of 
the response into a straight line with a slope of 2.0. Figure 2.3 illustrates such a plot of 
human rod electroretinogram (ERG) data (Hood and Birch, personal communication). 
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Fig. 2.3 Double logarithmic plot of human rod ERG data (from Hood and Birch, 1990). As shown by the 
solid line, the initial phase of the response has a slope of 2.0 in agreement with eqn (2.9). 
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As shown by the solid line, the rod ERG response has an initial slope of 2.0, so there are 
three stages in the rod biochemical response to light as described in (2.6) and solved in 
(2.9). This shows that a neuroscientist can sometimes infer aspects of the underlying 
biochemistry or circuitry from a theoretical analysis of the measured response. 

We can generalize our treatment of cascades to N stages, each with time constant r and 
amplification A: to yield: 

j.N-1 / , \ A?-1 

(N~- 1)! VT = A ' ( 0 = 7 T 7 - T T T ( 1 ) Z~"T (2-10) 

where zs{t) is the response of the Mh stage of the reaction cascade. Note that we can allow 
different values of the amplification k so long as r remains constant for all stages. 

2.3 Responses of a simple model neuron 

Let us now see how (2.3) can be modified to describe the response of a simple neuron to an 
external stimulus. This neuron will be represented by its spike rate as a function of time 
without describing the shape and timing of each individual spike. Before diving into the 
mathematics, however, a brief discussion of neural responses as a function of stimulus 
intensity is in order. 

The particular physiological example I shall choose is from the visual system, but 
similar functional relationships with slightly different parameter values are common in 
the nervous system. Sclar, Maunsell, and Lennie (1990) measured the spike rate of visual 
neurons in response to stimuli of varying contrast or intensity. Recordings from several 
different levels of the visual system (lateral geniculate, striate cortex, middle temporal 
cortex) showed that all neurons could be described by a single equation in which only the 
parameters differed among visual areas. Albrecht and Hamilton (1982) have also found 
that this same equation provided a better fit to their data than several other candidate 
equations. The equation is known as the Naka-Rushton (1966) function in vision 
research and as the Michelis-Menton equation in chemical kinetics. This equation relates 
a stimulus intensity P, which may be thought of as the net postsynaptic potential reaching 
the site of spike generation, to response or spike rate S(P) as follows: 

( MPN 

1 " f o r P > 0 S(P)= < oN + PN (2.11) 

I 0 for P < 0 

In this equation M is the maximum spike rate for very intense stimuli, and a determines 
the point at which S(P) reaches half of its maximum. Hence, o is termed the semi-
saturation constant. Finally, N determines the maximum slope of the function, or how 
sharp the transition is between threshold and saturation. These points will become evident 
by inspection of Fig. 2.4, where M = 100, a = 50, and N assumes several values within the 
range reported for visual neurons. In particular, Sclar et al. (1990) reported that lateral 
geniculate neurons were best fit by values of N averaging 1.4, visual cortical neurons 
had lvalues around 2.4, and middle temporal cortex neurons had lvalues around 3.0. 
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Fig. 2.4 Naka-Rushton function (2.11) plotted for three values of N with u = 50 and A?= 100 (top panel). 
The bottom panel shows spike rates of four different neurons along with fits of (2.11) to the response rate of 
each (reproduced with permission, Albrecht and Hamilton. 1982). 

Similarly, Albrecht and Hamilton (1982) reported average values of N = 3.4 and 
M = 120. Representative data from the Albrecht and Hamilton (1982) study are plotted 
in Fig. 2.4 for comparison. In this book, we shall usually let M = 100 and N = 2 
for mathematical convenience. This means that our Naka Rushton function will have 
an accelerating nonlinearity near x = 0 and will have a maximum response rate of 
100 spike/s. However, none of our conclusions depend on these particular choices. The 
semi-saturation constant o will be varied to suit particular mathematical or physiological 
contexts. It is important to be aware that (2.11) represents the asymptotic or steady state 
firing rate of a neuron. As we shall see, neural responses will generally vary over time as 
they approach the rate determined by (2.11). Note that the general form of S{ P) involves a 
threshold for P near zero followed by a roughly linear region in which S(P) increases 
proportionally to P. Finally, the spike rate saturates for large P. Many mathematically 
similar functions have been used in describing neurons, particularly the hyperbolic tan
gent, tanh. However, all of these functions have the same general sigmoidal, or S-like 
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shape, which is exhibited by S(P) in Fig. 2.4. As the Naka-Rushton function in 
(2.11) provides the best fit to physiological data (Albrecht and Hamilton, 1982), it will be 
used here. 

We can now write down a differential equation describing the response of a single 
neuron to an arbitrary stimulus. If the Naka-Rushton function with M = \00,N = 2,and 
a = 40 is designated by S(P) and the neural response or spike rate is designated by R, then: 

dR 
"d7 

-R + S(P)) (2.12) 

Let us solve this equation as a function of ? on the assumption that R(0) = 0. From 
Theorem 1, the solution may be seen to be: 

R(t) = Ac •l/r + - I C 
T. /O 

-('-'')/ TS(P{t'))dt' (2.13) 

This equation describes the responses of cortical cells to a wide variety of time-varying 
stimuli. We can obtain exact results for the special case where P is a constant input. Then 
eqn (2.13) may be solved by simple integration yielding: 

R(t) -,/T )S(P) (2.14) 

R{t) is plotted for P = 40, 80, and 120 in Fig. 2.5, where r = 15 ms. Note that S(P) is 
similar to the solid curve in the top panel of Fig. 2.4. Thus, we have solved the equation 
for time evolution of the spike rate of a neuron that has the nonlinear stimulus-response 
relationship given by S(P) but that nonetheless is governed by linear dynamics. The 
nonlinearity in this simple neuron is apparent in Fig. 2.5 from the fact that stimulus 
magnitudes differing by 40 produce a progressive compression in the asymptotic response 
levels. This example raises the important point that the solution of a differential equation 
can be a nonlinear function of its input, as S(P) is indeed a nonlinear function of P, even 

1 OOi 1 r 

20 40 60 
Time (ms) 

8 0 1 00 

Fig. 2.5 Solution (2.14) to eqn (2.12) for stimulus levels P = 40, 80, and 120. 
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though the dynamics in (2.12) are linear in the response R(t). When we speak of a 
differential equation as being linear, we really mean only that it is linear in the dynamical 
variables. 

One more important point may be made concerning eqn (2.12). In the case where 
S{P(t)) = S, a constant independent of ?, we can solve immediately for the equilibrium 
state of the neuron. At equilibrium, there is no variation with time, so dR/dt = 0. 
It follows from (2.12) that: 

R = S when — = 0 (2.15) 
d? 

The equilibrium state is also referred to as an equilibrium point or steady state, and these 
terms will be used interchangeably hereafter. The important concept to retain here is that 
an equilibrium point is defined mathematically as a state of the system where nothing 
changes with time. We shall subsequently see that these points are extremely important to 
our understanding of nonlinear neural systems. From the solution to (2.12) in (2.14), we 
can see that R(t) approaches equilibrium exponentially as ? —> oc. Therefore, this equi
librium point is asymptotically stable. Equilibrium points and stability will be explored in 
detail in the next chapter. 

2.4 Excitatory and inhibitory postsynaptic potentials 

With the background gained thus far, we can now examine the role of ion channels in the 
generation of postsynaptic potentials. Ion channels are governed by Ohm's law, which 
states that / ~ g(V- E), where /is the ionic current across the nerve membrane, g is the 
conductance (reciprocal of the resistance) usually in units of nano-Siemens (nS), and V\s 
the voltage difference across the membrane in millivolts (mV). The effective voltage for 
any ionic current is the difference between the membrane potential Kand the equilibrium 
potential E of the ionic species in question. For any ionic species, the reversal potential is 
identical to E, because that is the membrane potential at which the sign of the current / 
changes. The equilibrium potential E is determined by the Nernst equation, which 
states that: 

„ RT. /C„ N ( 1 1 6 ) 

t = — in, 
-F \ C 

where z is the charge on the ion in question, and Cout and C,n are the respective con
centrations of the ion outside and inside the cell. R and Fare respectively the thermo
dynamic gas constant and the Faraday constant, and T is the temperature in degrees 
Kelvin. At 20°C the ratio RT/F= 25mV. The Nernst equation can be derived from 
thermodynamic principles. 

Let us consider a simple patch of dendrite that has a passive current due to ionic leakage 
through the membrane plus channels for excitatory and inhibitory postsynaptic poten
tials (EPSPs and IPSPs). Due to the capacitive properties of the lipid bilayer of the 
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Fig. 2.6 Postsynaptic responses to a single presynaptic spike for various levels of the postsynaptic resting 
potential from +20mV to -81 mV (reproduced with permission, Huettner and Baughman, 1988). The 
reversal or equilibrium potential is close to 0.0mV. 

membrane, the equation for the change of membrane potential V with time is: 

~=-\{g^V-E\)+gt{V-Et)+gl(V-E])} (2.17) 

In this equation, g\ and E\ are the conductance and equilibrium potential for the leakage 
current; ge and Ee refer to EPSP ion channels; and g, and Et are the conductance and 
equilibrium potential for the IPSP channels. The IPSPs simulated here are due to GABAa 
channels, which are present on all cortical neurons (Gutnick and Moody, 1995), including 
those of human neocortex (McCormick, 1989). The equilibrium potential for our exci
tatory synapse may be obtained from the data in Fig. 2.6, which shows EPSPs generated at 
a synapse for different values of the resting membrane potential V (Huettner and 
Baughman, 1988). It is apparent that the reversal potential occurs close to OmV, which 
is the value we shall adopt. Similarly, the data in Fig. 2.7 show that the early 
GABAa equilibrium potential (due to Cl~ ions) is about — 75 mV in human neurons 
(McCormick, 1989). The average resting potential for human neurons is also about 
-75 mV (Avoli et ai, 1994). If we setgi = 1 nS and r =12.5 ms, (2.17) becomes: 

d_K 
"d7: 12.5 

{(V+75)+geV + gl(V+75)} (2.18) 

When there is no transmitter release at either excitatory or inhibitory synapses, ge = 0 and 
gi = 0, and it is easy to see that V = -75 mV is the equilibrium value of (2.18). Suppose 
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Fig. 2.7 IPSP amplitudes in a human cortical neuron plotted as a function of postsynaptic resting potential 
(reproduced with permission, McCormick, 1989). The GABAa reversal potential (early IPSP) occurs at about 
-75 mV. The late IPSP, due to a GABAb synapse, has a lower resting potential of about -95 mV. 

now that an excitatory synapse becomes active. We represent this by letting ge 

for a period of 1.0 ms. Equation (2.18) thus becomes: 

dK 
~d7 

V(0) 

1 
— {(V+75)+2V} = - ~ - (3V+15) f o r O < ? < 1 

12.5 
-75 

!nS 

.19) 

Thus, 

dV 3 
d7 = H 5 ( - F - 2 5 ) 

where it is assumed that Lis at the resting potential before the EPSP. Using Theorem 1 the 
solution may be derived easily: 

V(t) At -0.24/ A).2Al' 25 d?' 
12.5 JO 

where 0.24 = 3/12.5. Evaluation of the integral gives: 

V(t) = -75e - ° : 4 ' - 25(1 - e-024') = -50e" 0 2 4 ' 2S (2.20) 

where A has been chosen so that K(0) satisfies the initial condition. After 1.0ms, 
K(?) = -64.3 mV, so we see that this conductance change due to synaptic transmission 
has depolarized the neuron by 10.7 mV, which is just about the EPSP amplitude obtained 
for a membrane potential of -81 mV in Fig. 2.6. Equation (2.20) is plotted as a solid line 
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Fig. 2.8 Piecewise linear solution of (2.18) for an EPSP in which the conductance changes abruptly at 1.0ms. 
The shape is very similar to the —81 mV record in Fig. 2.6. 

for the first millisecond in Fig. 2.8. (The line appears almost straight only because 1.0 ms is 
such a short time relative to the time constant of 12.5 ms.) 

After 1.0 ms, we assume that the effects of the neurotransmitter are terminated, so 
ge = 0 again (synaptic conductance changes do not end quite so abruptly, but this is still 
a reasonable approximation). To solve for the decay in the postsynaptic potential, 
therefore, we must now solve the equation: 

dV 
~dt' 

V(\): 
12.5 

-64.3 

T + 7 5 } f o r ? > l 
(2.21) 

Note that our new initial condition is V(\) = -64.3mV, which is not the equilibrium 
value. Note also that this initial condition occurs at ? = 1 ms, because that is the time at 
which the synaptic conductance reverts to its original value. To shift the initial condition 
from 0 to 1 ms, it is only necessary to replace ? by (? - 1) in the solution, so Theorem 1 
produces the result: 

V(t) -64.3 e -0.08(7- 75( -0.08(;-l)\ _ ) = 10.7e -0.08(r-l) 75 (2.22) 

for ? > 1 ms. This function is also plotted in Fig. 2.8 beginning at ? = 1 ms. There is a 
striking similarity between our mathematical EPSP and the shape of the EPSP obtained in 
the —81 mV resting condition shown in Fig. 2.6. Note that the decay back to equilibrium 
in (2.22) is three times slower than the initial rise of the potential in (2.20). This is a 
mathematical consequence of membrane conductance changes during synaptic trans
mission, and it indicates that this problem is actually nonlinear! We have solved for the 
EPSP in this case using what is called a piecewise linear approximation, which is the 
simplest approximation to an inherently nonlinear dynamical problem. 

Let us see just how nonlinear synaptic interactions typically are. Suppose that the 
dendrite is at the -75 mV resting potential, and synaptic activation causes a change from 
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gl = 0 to g, = 12 nS for 1.0 ms. Referring back to eqn (2.18), you will see that this will 
produce no change in membrane potential, because -75 mV is both the resting potential 
and the equilibrium potential for the GABAa synapse. Can an inhibitory synapse that has 
no effect by itself reduce the excitation produced by an EPSP? To answer this question, let 
us assume that an EPSP and an IPSP occur simultaneously in the dendrite. Now we must 
solve (2.18) withge = 2nSandg, = 12nS for 0 < ? < 1: 

^ = - T ^ { ( f / + 7 5 ) + 2 L + 1 2 ( L + 7 5 ) } = - 7T^ ( 1 5 F + 9 7 5 i (2-23) 

The solution is again found using Theorem 1: 

V(t) = -10e~ 1 2 ' - 6 5 (2.24) 

Now the peak depolarization at ? = 1 ms due to the EPSP has dropped to V = -68 mV. 
This is a drop from the peak of -64.3 mV when the EPSP occurred without a concurrent 
IPSP. Thus, an IPSP that has no effect on the membrane potential when it occurs alone 
has reduced the effect of a concurrent EPSP by about 35%. As a result of this effect, 
GABAa synapses are frequently termed shunting synapses because their effect is to shunt 
or short circuit the depolarizing current produced by EPSPs. This highly nonlinear 
interaction is essentially divisive rather than subtractive, although neural modelers 
sometimes assume that inhibition is inherently subtractive. Only when synapses are fairly 
far apart on the dendritic tree or on different dendritic branches do EPSPs and IPSPs 
interact in a manner approximating addition and subtraction. 

2.5 Exercises 

1. Solve the following equation for the initial condition x(0) = 17. 

d.v 1 

d7 = T 3 ( ^ + 5 ) 

2. Solve the following equation for the response rate R(t) of a neuron for each of the 
following values of the postsynaptic potential: P- 10, 20, and 30. Plot your results on a 
single graph for times up to 100 ms assuming that R(0) = 5 in each case. 

dR 1 / 50P4 

R + dt 20 V 154 + />4 

3. Prove that eqn (2.9) follows from (2.6) and (2.8) by solving using Theorem 1. Now add 
a fourth stage, call it w(t) to (2.7) governed by the equation: 

dlV 1 

Derive the solution w(t) for vt'(0) = 0. Does this agree with eqn (2.10)? 
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4. In this problem we will explore a piecewise linear approximation to action potential 
generation. There are two ionic channels, one for Na"1" (£Na = 50mV) and one for K+ 

(£K = -90 mV), resulting in the equation: 

^ = - 4 { g N a ( K - 5 0 ) + g K ( l / + 9 0 ) } 

where gic = 0.6 is the K+ resting conductance and gNa =0.1 is the Na+ resting con
ductance. First solve for the equilibrium or resting potential and use this as the initial 
condition for the following. After threshold depolarization, the action potential may be 
approximated by three successive stages: 

(a) A brief but large Na+ conductance increase, so let gNa = 5.0 and £ K = 0 . 6 for 
0< ?< 1 ms. 
(b) Na+ conductance decreases to zero and K+ conductance increases, so gNa = 0 and 
gk = 2.0 for 1 <?<4ms . 
(c) Both conductances return to normal, so gNa = 0.1 and gK = 0.6 for ? < 4 ms. Calculate 
the piecewise linear solution to this problem and plot the result. This problem should give 
you an intuitive feel for the role of Na+ and K+ conductance changes in generating the 
action potential. 

5. Generalize eqn (2.19) to the case where there are N simultaneous excitatory synaptic 
events. Assuming that there is no inhibition and that ge = 2 nS, the equation becomes: 

^~ = --^-{(V+75) + 2NV} f o r 0 < ? < l 
d? 12.5 

V(0) = -75 

Obtain the analytical solution for 0 < ? < 1 ms (you need not solve for the decay phase). 
Plot the peak EPSP value V{\) for 1 < N< 12. Do EPSPs add linearly, or does the bio
physics produce saturation effects? 

6. Solve eqn (2.18) for the case where there is one excitatory synaptic event but N con
current inhibitory events. Assuming that ge = 2 nS, and g, = 12 nS the equation becomes: 

^-=--±-{(V+75) + 2V+l2N(V+75)} 
dt lz.5 

V(0) = -75 

Obtain the analytical solution for 0 < ? < 1 ms (you need not solve for the decay phase). 
Plot the peak EPSP value V{\) for 0 < N < 8. Discuss the results of this shunting inhibition 
in terms of the linearity or nonlinearity of synaptic effects. 



Two-dimensional systems and 
state space 

The first order differential equations discussed in the previous chapter are limited in their 
applicability, as a single equation can only describe responses of a single neuron or a single 
postsynaptic potential, etc. We are mainly interested in studying systems in which many 
neurons interact to produce complex behavior. This leads us naturally to consider what 
happens when several first order differential equations are coupled together to produce a 
neural network. As all of the dynamical features of multi-component linear systems can 
occur when only two component processes interact, this chapter will focus on an 
exhaustive classification of the behavior of such systems. (As will be seen later, however, 
certain nonlinear phenomena, such as chaos, can only occur in systems with three or more 
components.) As two-component systems can describe responses of two interacting 
model neurons, their responses can be regarded as defining two axes in a plane. This 
insight leads to the concept of the state space of a dynamical system, which will be 
developed here and employed throughout the book. 

3.1 Second order equations and normal form 

By definition, a second order differential equation is one which contains only first and 
second derivatives of the dependent variable with respect to time ?, but no higher deriva
tives. Without doubt, the most famous second order differential equation ever written is 
Newton's (1687) second law of motion, / = ma, where / is force, m is mass, and a is 
acceleration. In a typical textbook example of a weight at the end of a spring, the 
restorative force f=—kx, where x is the position relative to the resting length of the 
spring, and the air resistance contributes a second force term that is proportional to 
velocity. As acceleration is the rate of change of velocity, a = dv/d?, and velocity is the 
rate of change of position, v = dx/dt, Newton's second law for a spring can be written as: 

d2.v , d.v 
m—^ = -kx — r—- or 

d?2 d? 
(3.1) 

d-.v d.v , 
m—T + r—- + kx = 0 

d?- d? 

Given our focus on neuroscience, it is interesting to note that this same equation pro
vides a simplified description of the contraction of muscle fibers, as will be discussed 
below. 
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Let us now proceed to solve (3.1). Assuming k and r are constants, we may proceed in 
the same manner as (2.1) in the last chapter by substituting an exponential function 
x = a exp(A?): 

.2 . J 

m - 4 + r — + kx = mX2atx' + r\atXl + katXl = 0 (3.2) 
d?2 d? 

Factoring (3.2), we obtain the following characteristic equation for A: 

mX2 + rX + k = 0 (3.3) 

This quadratic equation is readily solved to yield: 

x = -r±Vr2-4mk 
2m v ' 

Note that (3.4) yields two values, Ai and Ai, that solve (3.1). This means that the general 
form of x(t) will be a linear combination of two exponentials: 

x{t) = atx<'+ beX2' (3.5) 

where a and b are constants. The particular values of a and b must be determined from the 
initial conditions. As there are two constants, there must be two initial conditions for this 
second order problem, and these are generally taken to be the values of both x and the 
velocity (dx/dt) at ? = 0. 

Rather than pursue this example further, however, let us now see how (3.1) can be recast 
as a system with two interacting components. All we need do is define a new variable, y, 
which we equate to the velocity, d.v/d?, and then substitute this into the first equation in 
(3.1). The resulting two-equation system is: 

dx 
= y 

1 

f-kx-ry) 
I i <"> 
d? m 

Thus, we see that Newton's second law can be re-described by a pair of equations that 
incorporate interactions between position and velocity. When a higher order differential 
equation is written as a system of coupled first order differential equations, as in (3.6), the 
equation will be said to be in normal form. This is a more general definition of normal form 
than is employed in some other texts, but it will suffice here. Almost all higher order 
differential equations of scientific interest can be written in normal form using the same 
stratagem of defining new variables to represent the various derivatives of the function. 
To take one third order example, the equation: 

d3.x d2.r Ax , . 
^ + acXf+bTt + cx = g[t) (3-7) 
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can be written in normal form as the equivalent system of first order equations: 

d.v 
d7 = v 

(3.8) 
d? 
d> 
d? 

— = -az-bv- cx + g(t) 
d? 

Nonlinear differential equations can always be written in normal form so long as they 
are linear in the highest order derivative. Differential equations are termed quasi-linear if 
the term containing the highest order derivative is linear. Virtually all equations in both 
theoretical physics and neuroscience fall into this category. Let us consider just one 
example, the famous van der Pol (1926) equation, which was developed as the first 
mathematical model of the heartbeat: 

^-a(l-x2)% + bx = 0 
dt- dt 

This is converted to normal form in the same manner as our linear examples: 

dx_ 

fV (39) 
-r = a(l -x2)y-bx 
at 

A slightly modified version of this equation (the FitzHugh-Nagumo equation) has been 
proposed as a simple approximation to the Hodgkin-Huxley equations and will be dis
cussed in Chapter 8. All quasi-linear equations can be cast into normal form, and it is thus 
the most general form for representing differential equations. It is important to note, 
however, that nonlinear differential equations in normal form cannot always be con
verted back into a single higher order equation. 

Normal form equations will be very important to our study of neurodynamics for 
two reasons. First, the most powerful methods for solving nonlinear differential equa
tions numerically by computer require that the equations be cast in normal form (see 
Chapter 5). More importantly, it is natural to think of neural problems in terms of their 
components, typically either neurons, ionic species, or ion channels. In these cases, one 
writes one first order equation for each component and studies the resultant normal form 
system. As a simple example, suppose that we have two neurons, one excitatory (E), and 
one inhibitory (I), that are connected to form an inhibitory feedback loop, as illustrated 
in Fig. 1.3. If each neuron is described by its spike rate as in (2.12), this two neuron 
network would be described by: 

f = i[-£+^-W)] 
(3.10) 

- = _ [ - / + S(fl£)] 
d? T\ 
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where S is the Naka-Rushton function defined in (2.11). The constants a and b here 
represent weights of the synapses from E —> /and from / —> £ respectively, while p is the 
excitatory input to the £ neuron. Nonlinear neural equations like these have been ana
lyzed in detail (Wilson and Cowan, 1972), and we shall study them in Chapters 6 -8 after 
we have developed some further background. 

3.2 Solution of second order systems 

In the last section we saw that all quasi-linear second order systems can be written in 
normal form. Restricting ourselves to linear systems at present, a general second order 
system may be written in vector notation as: 

d (x\ fa] a2\ fx\ (b\ 

dt \yj \ «i fl4 / \yj \b2 

or 

— = AX+B where X = () (3.11) 

(The double headed arrow over the A will always designate a square matrix.) All of the as 
and /3s in (3.11) are assumed to be constants. In analyzing any system of differential equa
tions such as this, the first step is to ascertain the location of the equilibrium point or steady 
state. This occurs where there is no change in the system with time, so the temporal deriva
tives must all vanish simultaneously at the steady state. In vector form, the solution is: 

dfeq /0 
d? VO 

so 

Xeq = -A B (3.12) 

where A~l is the inverse of matrix A. (Rather than calculating A~x outright, it is more 
efficient and accurate computationally to solve for Xeq using a technique known as 
Gaussian elimination with back substitution, see Press et al., 1986.) Solving (3.12) is 
equivalent to solving two simultaneous linear equations. To simplify this, the disk 
accompanying this book contains the MatLab™ script Equilibrium.m for solving (3.12) 
using a Gaussian elimination algorithm. The user simply types in the values of the four as 
and the two bs, and MatLab solves (3.12) for the coordinates of the steady state. As one 
example using the program: 

-9 - 5 

1 - 3 
B 

so 
/ i 

* « q = l l l ( 3 1 3 ) 
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In this example, as in any linear system, there will be a unique steady state, as sets of 
simultaneous linear equations have (except in pathological cases) a unique solution. 
Because of this fact, (3.11) can be rewritten by translating the steady state to the origin. 
This is simply done by subtracting the coordinates of the steady state solution from x and 
v, with the result: 

dr -*, 
d? 

X' = X-Xeq so -r- = AX' (3.14) 

This transformation eliminates the vector B from the equation without otherwise 
affecting the dynamics. Once (3.14) has been solved for A", Xtq is simply added to pro
duce the final solution. 

We can now derive the general solution to (3.14). As in the simple case of (3.1) above, 
where we obtained the characteristic equation (3.3) by substituting an exponential 
function for x, we can solve (3.14) by substituting a vector of exponentials for Afwith 
arbitrary coefficients a and b: 

l'f'\, so ^ - = XX' = AX' (3.15) 
htx>) d? 

The right-hand equality here may be rearranged to give: 

{A-X1}X'=Q, where ' = ( £ J ) (3 ,6) 

/ is known as the identity matrix. One trivial solution of this equation is X' = 0, which is 
clearly of no scientific interest. This, however, is the unique solution to the equation if 
the matrix {A — XI} has an inverse (the reader should convince herself of this by applying 
the inverse of this matrix to both sides of the equation). Therefore, (3.16) can have non-
trivial solutions only if {A — XI} does not have an inverse. As is derived in linear algebra 
texts, this can occur only if the determinant of this matrix vanishes: 

\A-XI\ = 0 (3.17) 

The determinant in (3.17) is just a quadratic polynomial, so (3.17) generates the 
characteristic equation for the system (3.14). To continue our earlier example, if we take 
A from (3.13), eqn (3.17) yields: 

A-XI 
-9 - A - 5 

1 - 3 - A ( - 9 - A ) ( - 3 - A ) + 5 = 0 (3.18) 

The solutions to this quadratic equation are A = - 4 , - 8. These solutions of the char
acteristic equation are called eigenvalues. We have thus derived a theorem applicable to all 
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cases where the two eigenvalues are not identical (that unusual case is treated later): 

Theorem 2: The solution to the second order differential equation: 

dX « - -
— = A X + B 
dt 

is obtained by first solving for the equilibrium state: 

A; eq -A B 

Next, one determines the two eigenvalues, A| and A2, of the characteristic 
equation: 

| 2 - A / | = O 

where / i s the identity matrix. Assuming A] 7̂  A2, the solution is: 

- ( : ; : : : ) + ( : : « ) + * < 
where a\, a2, b\, and b2 are constants determined by substitution back into the 
original equation and by the initial conditions. 

The task of solving for the coefficients a\, a2, b\, and b2 is really quite mechanical and 
we will therefore let MatLab™ do the work for us. However, it is important to have an 
understanding of the operations involved. We will need four equations to solve for the 
four unknown parameters. To obtain the first two equations, we substitute AT back into 
the original differential equation, which produces two algebraic equations in a\, a2, b\, 
and b2. This procedure is known as obtaining the eigenvectors of the A matrix. Two 
further equations are required to solve for the remaining two coefficients, and these 
equations are supplied by the initial conditions. 

Let us see how this works out in practice by considering an example. We have seen from 
(3.15) that substitution of a vector of exponential functions into a second order differ
ential equation in normal form reduces it to a matrix equation of the form: 

XX=AX 

In this equation A is an eigenvalue of the matrix A. From the example in (3.18) we have 
found that A = - 8 is one of the eigenvalues of the matrix: 

(3.19) 
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Therefore, the general solution A'for A = - 8 must satisfy: 

a ,e - 8 ' \ / - 9 - 5 \ / a , e - 8 ' \ = / - 9 a , e - 8 ' -5ft, e" 
ft,e-87 V 1 - 3 ; U , e - 8 7 \ flie_8' "3̂ 1 e" 

Equating the top entries in both vectors gives the result: 

-8a, e-8' = -9a, e"8' - 56, e '8 ' 

Therefore, a, = -5b\. The reader should verify that equating the bottom entries in the 
vectors gives exactly the same result. This means that either a, or b\ can assume an 
arbitrary value, and we must therefore use one initial condition to specify that value. 
Thus, the X vector satisfying our equation is: 

X = b \ e-8< 

where b\ is determined from the initial conditions. This is called an eigenvector of the 
matrix A. If we repeat this procedure with the other eigenvalue, A = —4, of A, we will 
obtain a relationship between a2 and b2 defining the second eigenvector of A, which 
completes the solution. 

The procedure for solving linear second order differential equations using Theorem 2 
is very important, and fortunately it is sufficiently mechanical so that it can be done 
entirely by computer. The MatLab program LinearOrder2.m produces a complete 
solution to any two-component, linear system for any initial condition using Theorem 2. 
For simplicity, it is assumed that the equilibrium state has been translated to the origin. 
The program then plots the solutions (the state space plot will be discussed later) and 
prints out a symbolic solution in terms of exponentials that is accurate to about 10" . 
All the user need do is type in the A matrix and an initial condition vector B. As an 
example, we can solve the following differential equation defined by the matrix A in (3.19) 
for the initial condition XQ using LinearOrder2.m: 

£=(-? :{)*+© - - M : 
First we solve for the equilibrium point using Equilibrium.m to obtain the result: 

•%eq — 

Next we subtract this from the initial condition vector Xo, to obtain a new initial condition 
(XQ - ATcq). This translates the equilibrium point to the origin. Now we can use the 
program LinearOrder2.m by entering the A matrix and this new initial condition. 
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The result is: 

X 
-1.25 e-8 '+0.75 e"4' 
0.25e"8 ' -0.75e-4 ' 

Finally, we add Xeq to this to obtain the final result: 

-1.25e-8' + 0.75e-4' 
0.25 e~8' -0 .75e- 4 ' + 

You can verify that X(0) = 0, and Af(oo) = Xtq. As you can see, MatLab™ removes 
the drudgery from this calculation! 

3.3 Negative feedback in the retina 

Now let us apply our knowledge of linear second order differential equations to a real 
problem in neuroscience: negative feedback on cone photoreceptors in the primate retina. 
There is extensive evidence that the cones stimulate horizontal cells, while horizontal cells 
provide inhibitory (or negative) feedback onto the cones (Burkhardt, 1993, 1995). 
Schnapf et al. (1990) recorded from single primate cones and constructed a linear feed
back circuit to explain their results, which are plotted in Fig. 3.1. The cone current in 
response to a step change in luminance shows a transient overshoot followed by a slight 
undershoot before reaching its equilibrium value. In slightly modified and simplified 
form, the Schnapf et al. (1990) circuit can be adapted to describe cone (C) and horizontal 
(//) cell interactions by the following differential equations: 

dC_ J_ 
d? T C 

d / / _ 1 
d? ~ T H 

-C-kH + L) 

-H+C) 
(3.20) 

0.5 1.0 
Time (sec) 

Fig. 3.1 Electrical response (current) of a primate cone photoreceptor to a 1.0 s light stimulus turned on at 
( = 0 (reproduced with permission, Schnapf et at., 1990). The response at stimulus offset is the mirror image of 
that at stimulus onset. 
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L is the light-induced stimulus due to phototransduction, and k is a constant representing 
the strength or gain of the inhibitory feedback from the horizontal cell. (Schnapf et al. 
(1990) related their circuit to feedback within the cone itself rather than feedback from 
the horizontal cells, but the same equations describe either case.) Appropriate values 
for the time constants and the gain are r r = 0.025 S,TH = 0.08 s, and k = 4. Also, we shall 
assume C = 0 and H = 0 are the initial conditions. Thus. (3.20) becomes: 

— = 4 0 ( - C - 4 / / + £ ) 
d ' (3.21) 

dH 
— = \2.5(-H+C) 
d? 

In analyzing (3.21) let us first determine the equilibrium state on the assumption that 
the light level L is constant. Equating the time derivatives to zero, the equilibrium is 
determined by: 

~C-4H+E = 0 

-H+C=0 

The solutions to this are easily seen to be: 

C = - and H = C (3.22) 

Thus, the subtractive feedback in this neural circuit reduces L by the factor 1/5 in the 
steady state. If L = 10, the equilibrium state is C = 2, H = 2. Next, we shift the steady 
state to the origin by subtracting the equilibrium values from the initial conditions. The 
homogeneous equation thus obtained from (3.21) is: 

d(C\ f-40 -U0\fC>\ 

dt\H'J V12-5 ~ 1 2 - 5 J \H' 

where C" and H' denote the variables after translation of the steady state to the origin. 
We may now use Theorem 2 to find the solution. The initial conditions minus the equi
librium values are C = - 2 , / / ' = —2. Running LinearOrder2.m with these initial con
ditions produces the eigenvalues A = -26.25 ± 42.56?. Using Euler's formula (1.15), the 
imaginary parts of the eigenvalues may be converted into a real combination of sine and 
cosine functions. The MatLab program does this automatically, and produces the 
solution: 

C{t) = -2e"2625'cos(42.56?) + 8.17e-2625 'sin(42.56?)+2 
(3.24) 

//(?) = - 2 e~26 25' cos(42.56?) - 1.23 e^26 25' sin(42.56?) + 2 
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Fig. 3.2 Solution C{t) to (3.21) as represented by (3.24). The response at stimulus onset (t = 0) is very similar 
to that of the primate cone in Fig. 3.1. 

The equilibrium values (2, 2) have been added in accord with Theorem 2. C(t) is plotted 
as a function of time in Fig. 3.2. The similarity between the solution (3.24) and the 
physiological data in Fig. 3.1 is apparent. The response at the termination of light 
stimulation has not been plotted in Fig. 3.2, but it is mathematically the mirror image of 
the response to stimulus onset, and this is evident from the experimental data. 

3.4 Stability and state space 

Based on Theorem 2, all possible solutions of second order differential equations with 
constant coefficients may now be grouped into a small number of categories. This cat
egorization is based on the fact that the characteristic equation is quadratic and therefore 
must have exactly two roots. We have already seen that the unique equilibrium point for a 
linear differential equation can always be translated to the origin. Thus, it might be 
expected that solutions can be characterized by their behavior near the origin. An 
important concept here is that of a trajectory. A trajectory is the entire time course of the 
solution of a differential equation from ? = 0 to ? = oo, given a particular initial condi
tion. Thus, any differential equation defines an infinite number of trajectories, each 
corresponding to a different initial condition. Additionally, note that an equilibrium 
point is itself a trajectory, since a trajectory starting at equilibrium must by definition 
remain there for all eternity! 

We may now define the concepts of stability, asymptotic stability, and instability of an 
equilibrium point. An equilibrium point of a system of differential equations is asymp
totically stable if all trajectories starting within a region containing the equilibrium point 
decay to that point exponentially as ? —• oo. Conversely, the equilibrium is unstable if at 
least one trajectory beginning in a region containing the point leaves that region per
manently. Finally, an equilibrium is stable or neutrally stable if nearby trajectories remain 
nearby as ? —» oo but do not approach asymptotically. 
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Trajectories for second order differential equations may be conveniently plotted in a 
two-dimensional space in which the variables of the equations define the axes. Such a 
space is known as a state space or a phase space, terms that will be used interchangeably. 
Analytical solution of the system equations yields explicit functions of?, such as C(t) and 
//(?) in (3.24). If time is regarded as a parameter, then it is possible to plot the entire 
course of each system trajectory as a curve in the phase space. Phase space plots reveal 
the relationship between the variables at all points on the trajectory. Both the time 
dependence of solutions and the phase space are plotted by LinearOrder2.m, and 
experimentation with that program will provide a great deal of insight into the nature of 
phase space trajectories. Note that the phase space plot contains arrows indicating the 
local directions in which trajectories flow at various points in the space. 

All possible solutions to the second order differential equation described in Theorem 2 
may now be categorized and their phase space trajectories illustrated. From the fact that 
the characteristic equation is quadratic with real coefficients, the two eigenvalues must 
either both be real, both be pure imaginary, or else be a complex conjugate pair. The 
possibilities are enumerated below, and typical equations are given along with solutions 
for initial conditions A(0) = 1, v(0) = 1. 

A spiral point results when the eigenvalues are a complex conjugate pair. Thus, the 
solutions are in the form of exponentials multiplied by a sine and a cosine. The spiral point 
is asymptotically stable if the real part of the eigenvalues is negative. A typical trajectory 
of an asymptotically stable spiral point is plotted in the upper left of Fig. 3.3, which makes 

Spiral Point 

Saddle Pc 

• 

mt 

XX 
XX 

Node 

(cx>) 
Center 

Fig. 3.3 Typical phase plane trajectories for the four characteristic equilibrium points of linear dynamical 
systems: spiral point, node, saddle point, and center. The horizontal and vertical axes represent the two 
variables describing each system. Equilibrium points arc depicted by a dot in the center of each plot. 
Trajectories illustrated for the spiral point and node are asymptotically stable. Saddle points are always 
unstable, while centers are stable but not asymptotically stable. 
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clear that the trajectory is in fact a spiral. The following equation provides an example 
of a system with an asymptotically stable spiral point: 

d / , 

d? V.v 

solution : (3.25) 

x(t) =e_2 'cos(8?) -2e"2 'sin(8?) 

v(?) = e - 2 ' cos(8?) + 0.5 e~2' sin(8?) 

The equilibrium point is a node if the eigenvalues are both real and have the same sign. 
The node is asymptotically stable if the eigenvalues are negative, and it is unstable if they 
are positive. Typical trajectories at a node are plotted in Fig. 3.3, and an illustrative 
example is: 

, / N / -2 4\ / d fx\ / \ I x 

d? \yj \ o - 3 / V.v/ 

solution : (3-26) 

.\'(?) = 5 e - 2 ' - 4 e - 3 ' 

v ( ? ) = e ^ ' 

A saddle point occurs when both eigenvalues are real but have opposite signs. Because 
one eigenvalue is positive, all saddle points are unstable. As illustrated in Fig. 3.3, tra
jectories approach a saddle point along one axis (y in this example) but diverge from it 
along a different axis (x in this case). Typical equations generating a saddle point are: 

dt\y) = \0 -3JU 
solution: (3.27) 

x(t) =0.8e2 ' + 0.2e~3' 

y(t) = e -3; 

The final possibility is that the pair of eigenvalues are pure imaginary, and this con
dition defines a center. Euler's formula (1.15) in this case dictates that all trajectories must 
be a sum of a sine and a cosine of the same frequency. Because of this, all trajectories 
around a center will be strictly periodic oscillations. Because any periodic function repeats 
itself, phase space trajectories around a center will always be closed circular or ellipsoidal 
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shapes like those plotted in the lower right of Fig. 3.3. A typical example of a system 
with a center is: 

£CMX)e: 
solution : (3-28) 

.Y(?) =cos(3?) -0.33sin(3?) 

y(t) = cos(3?) + 1.33sin(3?) 

As the nature of the solutions and their stability are determined by the eigenvalues of 
the characteristic equation, all trajectories for all possible initial conditions will have the 
same qualitative behavior in any given linear system. However, this holds true only for 
linear systems, and it must be qualified when nonlinear systems are discussed. Indeed, the 
power and elegance of phase space representations can only be fully appreciated in 
nonlinear dynamics. 

3.5 Critical damping and muscle contraction 

Theorem 2 covers all possible second order linear differential equations except for one: 
the case where both roots of the characteristic equation are identical. The case of two 
identical roots is generally called critical damping for historical reasons deriving from 
physics. Critical damping is an exceptional case, as the probability that the coefficients of 
the characteristic equation, if chosen at random, would generate identical eigenvalues is 
zero. Nevertheless, it is easy to construct mathematical examples in which the two 
eigenvalues are identical, and these will be solved now. Physiologically, critical dampingis 
significant because it represents the simplest approximation to the dynamics of muscle 
contraction. In addition, the cascades of equations treated in the previous chapter are 
another case of critical damping (because the time constants of all stages are identical). 

Let us motivate critical damping by considering a simple model of muscle contraction. 
Figure 3.4 plots data on the force generated by a cat soleus muscle as a function of length 
at two different levels of motorneuron activation (Rack and Westbury, 1969). Although 
the overall curves are nonlinear, above an equilibrium length, XQ, the force generated is 
nearly linear over the considerable range indicated by the solid lines. No force is generated 
for .v < XQ, a state where the muscle is relaxed. The equilibrium length shifts to smaller 
values as the level of motorneuron activity increases. Neural specification of XQ is 
believed to be the way in which the central nervous system determines the desired length 
and force exerted by each muscle in the body, and this is termed the 'equilibrium point 
hypothesis'. Over the linear range, the force of contraction is of the form Q2(.Y - Xo), 
where the length of the muscle vis always assumed to be greater than or equal to.v0.The 
force of contraction is generated as actin-myosin bonds are formed, after which a con-
ftgurational change in the myosin head causes the muscle fiber to shorten (see Rothwell, 
1994). There is also some frictional resistance to contraction within the muscle due to the 
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Fig. 3.4 Force generated by cat soleus muscle as a function of muscle length in centimeters (reproduced with 
permission, Rack and Westbury, 1969). Changing the driving spike frequency from 5 to 10 Hz shifts the linear 
portion (solid lines) of the force curve to shorter lengths. The stimulating spike rate determines xQ, the 
equilibrium length at which the force drops to zero. 

breaking of actin-myosin bonds following contraction, and this friction is proportional to 
the velocity of contraction. Using Newton's second law (3.1) to describe muscle con
traction leads to the equation: 

d x „ dx 
—r + 2a—- + aA 

dt2 dt 
(X - Ac) = 0 (3.29) 

It is easy to see that the equilibrium state occurs when x = An, so we can eliminate XQ by 
defining the new variable x' = x — XQ. The coefficients in (3.29) have been carefully 
chosen so that the resulting characteristic equation, obtained by substituting x' = tXl, 
will have identical eigenvalues: 

A2 + 2aX + a2 = 0 (3.30) 

so A = —a. This is the most general formulation of the one case not covered by 
Theorem 2. One solution will certainly be: 

At) at (3.31 

where a is determined by the initial condition. However, there must also be a second 
solution, just as there are always two exponentials when the eigenvalues differ. 

Whatever form the second solution takes, it must certainly be some other function of ?. 
Let us therefore guess that it involves the same exponential as (3.31) and try to find a 
second solution of the form: 

x'(r) = A(0e- (3.32) 
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where /;(?) must be determined. Substituting (3.32) into (3.29) (with the x0 term removed 
by the change of variables described above) and differentiating gives: 

e-°' ^ - 2a t-'" - + a2 t~a' h + 2a (X Q ' ~ - a e"Q' h) + a2 t~al h = 0 (3.33) 
d?2 d? \ dt J 

You can see that almost all the terms cancel conveniently, so (3.33) reduces to: 

e— ^ = 0 (3.34) 

d?-

This is easily solved by integration with the result: 

h = bt (3.35) 
where b is an arbitrary constant of integration. Substitution of this result into (3.32) 
shows that the general solution to (3.29) is: 

.v(?) =at-°' + btt-a! + x0 (3.36) 

where a and b are determined by the initial conditions. This special case, omitted from 
Theorem 2, is called critical damping, because the smallest independent variation in the 
coefficient of A in (3.30) produces either two different negative real eigenvalues or else a 
complex conjugate pair of eigenvalues with negative real parts. Suppose, that is, that the 
characteristic equation for a dynamical system was: 

A2 + (2a + 6)X + a2 = 0 (3.37) 

where 6 represents a small parameter variation. The eigenvalues will produce a spiral 
point for small 6 < 0; a node for 6 > 0, and critical damping only when 6 = 0. 

Thus, critical damping forms the boundary between an asymptotically stable node 
and an asymptotically stable spiral point. 

Because of variability in nature, real physiological systems will almost never exhibit 
critical damping (for aficionados, critical damping forms a set of measure zero in 
dynamics). However, values of coefficients that are close to those producing critical 
damping in (3.29) will produce responses very similar to the critical damping condition. 
Furthermore, critical damping produces the fastest approach to equilibrium for a linear 
differential equation because the two identical eigenvalues are smallest in this case, thus 
making the exponential decay fastest. Regarding muscles as an instance of critical 
damping, this suggests that evolution has optimized motor control for speed of response. 

Returning now to our example of muscle contraction, let us solve (3.29) for one of the 
simplest motor control systems in mammals: the control of rapid or saccadic eye move
ments. The open and solid symbols in Fig. 3.5 respectively plot angular positions of 
the eye during 15° and 30° saccades (Clark and Stark, 1974). These eye movements 
are obviously quite rapid, being completed within about 50 ms of their initiation. 
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Fig. 3.5 Data on saccadic eye rotations in degrees as a function of time in milliseconds (Clark and Stark, 
1974). Saccades of 15° and 30° amplitude are plotted by solid and open circles respectively. The two solid 
curves plot solutions to (3 29) given by (3.36) for two different values of the equilibrium length .v0. 

Eye rotations in the horizontal plane are controlled by a pair of muscles, one of which 
rotates the eye to the right and the other to the left. Each muscle is approximately 35 mm 
long when the eye is looking straight ahead, and shortening of the appropriate muscle by 
either 3 or 6 mm will produce a rotation of approximately 15° or 30° to the appropriate 
side. Applying (3.29) first to a 15° rotation, therefore, the muscle will initially be at length 
x(0) =35 mm, and the equilibrium length will be 3 mm shorter, so XQ =32 mm. Because 
the eye is initially at rest, the remaining initial condition is that the velocity be zero: 
dxjdt =0. Based on the data in Fig. 3.5, a = 0.09, which is 1/11 ms. Given these values, 
the solution (3.36) to (3.29) is: 

0.091 A(?) = 3e-u 'w '+0.27?e-UAW + 32 (3.38) 

The reader should verify that this satisfies the initial conditions. This result is plotted 
in Fig. 3.5 for XQ =32 mm. The agreement of the critically damped solution with the 
saccade data is reasonably good given that the biomechanics of eye movements have 
certainly been oversimplified here. The figure also shows the solution for XQ =29 mm, 
which corresponds reasonably well to the 30° saccade data. The solution in this case has 
been relegated to the Exercises. 

3.6 Responses to time-varying inputs 

There is only one more topic that we must consider to complete our analysis of second 
order linear differential equations. This is the case where the system is driven by a time-
varying input or forcing function. We saw in Theorem 1 of the previous chapter that 
the solution to a first order linear equation was the sum of the solution without forcing 
plus a convolution integral that produced a weighted sum of the history of stimulation. 
As we shall see, this result generalizes to the second order case as well. 
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To simplify the derivation, the second order form of the differential equation will be 
employed rather than normal form. Consider the fairly general second order equation 
with forcing function S(t): 

,2 . i 

-^+(a + b)-^ + abx = S(t) (3.39) 
d?- d? 

The homogeneous equation is solved by equating the left-hand side to zero and solving the 
characteristic equation, which gives A = —a,—b. This is why the coefficients were written 
in terms of a and b in the first place. The general solution of the homogeneous equation is 
therefore: 

x(t) = At~l" + Bt-h' (3.40) 

To find a specific solution to (3.39) that involves S(t), we can adopt the same strategy that 
was used above to solve the critical damping problem. This is termed the variation of 
parameters approach. Thus, we attempt to find a solution where constants A and B in 
(3.40) are replaced by two functions of ?, g(t) and /?(?): 

x = gt-'"+ht'h' (3.41) 

As this is only one equation in the two unknown functions g and h, a second equation 
must be chosen to fully define the solutions. To obtain a second equation in g and h, 
differentiate (3.41): 

^=-agt">-bht-i"+t-'-<d-f + e - » ^ (3.42) 
d? d? d? 

To obtain a second equation determining the solution, let us require that: 

,,, de h, dh 
t "' ~ + e *' — = 0 

d? d? 

so: (3.43) 

~ = -agt "' -bhc-'" 
dt 

We can now substitute dx/dt from (3.43) and x from (3.41) into (3.39) to give: 

- . , - ! - » , - * * . * ,,.44, 
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In obtaining this result, dx/dt in (3.43) has been differentiated a second time. If the 
first relationship in (3.43) is used to eliminate dg/dt from (3.44), the result is: 

XX"s«> <345> 
This is readily integrated to give the solution for /<(?) so long as a / b: 

/ ' ( ' )= 7 e'"'S(t')d,' (3.46) 
a — o Jo 

Solving the first equation in (3.43) for dh/dt and substituting into (3.44) yields a similar 
solution for g(t): 

g(<)=j^~ I'e'"' S{t')dt' (3.47) 
b-aJo 

Substitution (3.46) and (3.47) into (3.41) produces the solution to (3.39) for any forcing 
function S(t). This result may be stated as a theorem: 

Theorem 3: 

when a ^ b 

x(t) = A t 

The solution to 

is given by: 

}-"' +BtTb' 

where A and B are arb 

d2A 

d?2 

X-
trary 

the equation 

+<«+*>£ 

' / ' e - ( ' - ' ' 
-a Jo 

constants ch 

+ abx = 

S(t')dt 

S(t) 

1 ' 
a -

osen to satisfy 

/ ' -Ht-

bJo 
']S(t')dt' 

the initial conditions. 

Thus, we see that Theorem 3 is a straightforward generalization of Theorem 1 to the 
case of a second order system. In both cases the forcing function appears in convolution 
integrals involving the exponential decay eigenfunctions we found in solving the homo
geneous equation. In the case of critical damping, a = b, so Theorem 3 will not apply. 
However, the same approach using variation of parameters can be shown to solve the 
problem in that case as well. 

You may find the choice of (3.43) as a second equation relating g(t) and /;(?) to be a 
somewhat capricious if clever trick. In a sense this is true. However, a second equation 
relating g and h is essential if the problem is to be solved. Furthermore, the equation in 
Theorem 3 does have a unique solution, as is proved in more extended treatments of 
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linear differential equations. Therefore, we can be certain that our choice of (3.43) has 
allowed us to derive the unique solution to (3.39). 

Congratulations! You have now covered those aspects of the theory of first and second 
order linear differential equations that are most relevant to contemporary neuroscience. 
Although mathematics courses in linear differential equations certainly include more 
material, the additional topics are generally of less scientific interest. Furthermore, we will 
soon cover some of these topics, such as differential equations with time-varying coef
ficients in the much more general context of nonlinear dynamics, which is where they truly 
belong. 

3.7 Exercises 

1. Put each of the following three equations in normal form: 

d2.v 

d ? 1 " 

d2.v 

d? : " 

d4.v 

d ? 4 " 

- ' § • " " ' 

<*{$+"<-
, -, d x „ d.v d x 

-3"d7- + 7 d 7 d ^ + v cJ = 0 

2. For the following second order differential equation find integer values (if possible) of 
a and b that produce each of the following types of equilibrium points: (a) spiral point, (b) 
node, (c) saddle point, (d) center, (e) critically damped asymptotically stable point. For 
(a), (b), and (e) find values for both an asymptotically stable equilibrium and for an 
unstable equilibrium. In each case give the exact solution for the initial condition 
.v(0) = 2; v(0) = —1. (Note: there are many solutions in each case, and you need to 
find only one. The goal is to help you understand state space and the various types of 
equilibria.) 

dX f - 2 a 
d? " V 5 b 

3. At low light levels the parameter values of the retinal cones change and the feed
back from the horizontal cells becomes weaker. A modified version of (3.20) that is 
appropriate for low light conditions is: 

A (~* 1 

— = — (-C-0.5H+L) 
d? TC 

d? TH 

with TC = 100 ms and TH = 500 ms. Solve for the steady state as a function of L. Now 
obtain an exact solution for L = 3 and the initial conditions C(0) = 0, H(0) = 0. 
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4. Solve (3.29) for the motor control of a saccadic eye movement through an angle of 30°. 
In particular, let A0 = 29 mm, x(0) = 35 mm, and a = 0.1. Write down the explicit solution 
and plot the result for 0 < ? < 150 ms. 

5. The equation below describes a critically damped spring model of muscle contraction, 
with A'o as the equilibrium length specified by the central nervous system: 

d.v 
d7 = v 

dv 1 / 
d? ~T I 

( -V-A-o) 

T 

Obtain the exact solution of these equations for r = 0.08 s and x0 = 4 mm given the initial 
conditions x(0) = 7 mm, v(0) = 0. (Hint: first convert the equation back to a single 
second order differential equation.) 

6. Solve the following equation with forcing function 3?2 for ,v(?): 

d2.v . dx c - r r + 5 — -f 6x = 3 r 
d?2 d? 

The initial conditions are A(0) = 1 and d.v(0)/d? = 0. Plot the solution for 0 < ? < 2. 



Higher dimensional linear systems 

Our goal in theoretical neuroscience is to be able to describe and analyze systems 
with many components, be they neurons, dendrites, or ionic currents. The material in 
Chapters 2 and 3 has enabled us to examine systems with one or two components, such as 
the feedback circuit related to retinal cones. Fortunately, we now have all the background 
needed to generalize to linear systems with an arbitrarily large number of components. 
The reason for this is that all possible types of solutions found in high order linear systems 
with constant coefficients are simple generalizations of the solutions of second order 
systems. 

In dealing with higher order systems, it is generally not possible to find all of the 
eigenvalues of the system analytically, because polynomial equations beyond fourth 
order do not have general analytical solutions. Fortunately, MatLab provides fast and 
accurate numerical approximations to the eigenvalues of quite large systems. Further
more, we shall sometimes be interested only in whether or not all eigenvalues have 
negative real parts, as negative real parts guarantee that the steady state is asymptotically 
stable. There is a very powerful criterion due to Routh and Hurwitz that tests for negative 
real parts. 

The Routh-Hurwitz criterion can also be used to determine the strength of synaptic 
connections to guarantee that a neural network will generate oscillations. This can be 
extremely valuable when we know from physiology experiments that a network does 
oscillate, yet we lack detailed quantitative information on the synaptic weights. The same 
approach also elucidates the effect of delays in neural feedback loops, which can some
times produce undesirable oscillations possibly related to some forms of motor control 
disorders. 

4.1 Solutions of Â th order linear systems 

Let us consider a system of A' interacting neurons or N ionic species. If the interactions are 
linear, the system can always be described by a differential equation in normal form: 

d.V - -

This can be solved in the same manner as was used in deriving Theorem 2. namely, 
by substituting a vector of exponentials and then solving the resulting characteristic 
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equation. This approach leads to the following theorem: 

Theorem 4: The solution to the TVth order differential equation (4.1) is obtained by 
finding the N roots. A; to XN, of the characteristic equation: 

M - A / | = O 

where / is the identity matrix. The components of the solution vector are then of 
the form: 

5>e*" 

where values of the constants An are determined by solving for the eigenvectors 
and by the initial conditions. If a single eigenvalue, say A = u>, occurs k times, then 
the solutions associated with this eigenvalue will be of the form: 

Ai e"" + A2te" + Azt
2e" + ••• + Akt

k-] e"" 

As in the case of second order systems, roots that occur in complex conjugate or pure 
imaginary pairs will introduce sine and cosine terms, and multiple roots generate poly
nomials multiplied by exponentials as in critical damping. 

As a first example, consider the three-neuron system illustrated in Fig. 4.1. Each 
neuron excites one neuron (arrows) and is in turn inhibited by the other (line with 
black circle). If we take the excitatory synaptic strength to be 7, the inhibitory synaptic 
strength to be —10, and the self decay rate to be —5, the three coupled linear equations 
describing this system would be: 

(4.2) 
5 
7 
0 

-10 
- 5 

7 

7 \ 
-10 
- 5 / 

(Ei 
[E2 

U s 
The eigenvalues of this equation are obtained using the MatLab™ function eig() by 
typing the following in the command window: eig([— 5, -10, 7; 7, —5, -10; -10, 7, —5]). 
This produces the eigenvalues A= - 8 , -3.5 ± 14.71, so the neural responses E, will all 
have the form: 

Ei = Ae~*' +fie_35 'sin(14.7/) + Ce'35'cos(14.7?) (4.3) 

A, B, and C can be determined by substitution back into (4.2) to solve for the eigenvectors 
along with the initial conditions. Even without bothering to determine these constants, 
however, we have already discovered that the equilibrium point of this three-neuron 
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system is an asymptotically stable spiral point. In fact, it will not be necessary to solve for 
all the constants in solutions of higher order equations such as (4.3), because we will 
almost always be dealing with nonlinear problems where the important information is 
contained in the eigenvalues. 

4.2 Routh-Hurwitz criterion and oscillations 

For large linear dynamical systems, two questions frequently arise: (1) is the equilibrium 
point asymptotically stable? (2) Under what conditions will the system produce an 
oscillation? For example, if we knew that the neural network in Fig. 4.1 produced 
oscillations under physiological conditions, we might wish to discover what values of the 
excitatory and inhibitory synaptic strengths were required to sustain such behavior. Both 
of these questions are answered by the Routh-Hurwitz criterion and related theorems. In 
approaching this problem, let us first examine a necessary but not sufficient condition for 
asymptotic stability of the steady state at the origin. (Recall that any steady state can be 
translated to the origin by subtraction.) 

Theorem 5: The stability, asymptotic stability, or instability of the equilibrium 
point of (4.1) is determined by the roots of the characteristic equation: 

\A-\I\ = o 

The equilibrium will be asymptotically stable if all the roots of the characteristic 
equation have negative real parts. Writing the characteristic equation as: 

XN + aiXN~l + a2X"-2 + ••• + aiV_i A + aN = 0 

A necessary (but not sufficient) condition for all roots to have negative real parts is: 

ak > 0 for 1 < k < N 

This theorem provides a quick check for the possibility of asymptotic stability. Note that 
all coefficients must be positive; zero values are excluded. Theorem 5 will not be proved, 
because the proof focuses on the mathematical nature of polynomials and has no further 
connections with dynamical systems theory. 

If the coefficients of the characteristic equation satisfy Theorem 5, the next step is to 
apply the much more complex but definitive Routh-Hurwitz test, which I shall state as a 
theorem. In order to simplify the notation, let us state the theorem for a fifth order system. 
It readily generalizes to any higher order. 

file:///a-/i/
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Theorem 6 (Routh-Hurwitz theorem): Given the coefficients ak of the charac
teristic equation in Theorem 5, compute the following 
order N=5: 

A, = ai , A2 = 

A3 = 

a, 1 0 

c?3 a2 a\ 

as 04 03 

A 4 = 

fli 1 

a3 a2 

a\ 1 

a3 a2 

as a4 

0 0 

A5 = a5A4 

The system is asymptotically stable if and only if: 

Ak > 0 for 1 < k < N 

Furthermore, if A^ = 0, then A = 0 is one eigenvalue. 

series 

0 

"1 

a 3 

«5 

of determinants for 

0 

1 

«2 

« ] 

a 3 

«5 

a7 

1 
02 

a4 

^6 

0 
fit 

A3 

0 
1 

a2 

0 
0 

The proof of this theorem is an exercise in the theory of complex variables as applied to the 
roots of polynomials and may be found in Willems (1970). 

For reference, the most general form of the Routh-Hurwitz determinants for a system 
of order Nis: 

(4.4) 

a2k-i a2u-2 

Note that all of the lower order determinants referred to in Theorem 5 are obtained by 
starting in the upper left and considering the successively larger square matrices that are 
2 x 2 , 3 x 3 , 4 x 4 , and so on. The convention in (4.4) is that a-s = 0 ifj > Nor ifj < 0. The 
theorem has been formulated here so that a0 = 1, where a0 is the coefficient of XN. Many 
texts make a0 explicit, although it is trivial to divide through by a0 to obtain the char
acteristic equation used here. 
To take an example, A5 in a seventh order system would be: 

a, 1 0 0 0 
03 a2 a\ 1 0 
as a4 03 a2 ai 
a-] a^ a5 a4 aj 
0 0 a-j a^ as 

(4.5) 
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Theorem 6 was extremely valuable in determining the stability of higher order systems 
before the advent of programs such as MatLab that will compute the eigenvalues directly. 
Why, then, would one employ this theorem today? One answer is that the Routh-Hurwitz 
criterion is easy to program and may well yield a more accurate result than the numerical 
methods employed to find eigenvalues of higher order systems. This is because the 
derminants required by Theorem 6 involve simple multiplication, addition, and sub
traction; and the final stability test is just an inequality. More importantly, there is one 
application of the Routh-Hurwitz Theorem that can be extremely useful in studying 
neural systems. Many neural control systems have evolved to generate oscillations. Two 
major examples of such systems are neuronal control of locomotion and respiration. 
Accordingly, it will be very useful to determine conditions under which dynamical 
equations will generate periodic solutions. For linear systems a criterion for the existence 
of oscillations is produced as a by-product of Theorem 6. This is the Routh-Hurwitz 
criterion for oscillations: 

Theorem 7 (Routh-Hurwitz criterion for oscillations): For the Mb. order system in 
(4.1) compute the Routh-Hurwitz determinants in Theorem 6. One pair of 
eigenvalues will be purely imaginary and the system will therefore produce a 
sinusoidal oscillation if and only if: 

Ak > 0 and A v , = 0 for 1 < k < N - 2 

Note from Theorem 6 that the final Routh-Hurwitz determinant A,v = 0 as well if the 
conditions of Theorem 7 are met. This theorem can also be usefully applied to nonlinear 
dynamical systems, as we shall see in Chapter 8. 

In addition to determining whether a system will produce an oscillation. Theorem 7 can 
be used to determine parameter values where neural networks will oscillate. To see this, let 
us go back to the network in Fig. 4.1 and use Theorem 7 to determine whether there is 
some strength of the inhibitory synaptic connections in the network that will produce 
oscillations. Recall that with an inhibitory strength of - 10 in (4.2) the origin was found to 
be an asymptotically stable spiral point, and therefore no oscillations could occur. Let us 
now treat the inhibitory synaptic strength as an unknown parameter designated by -g 
(for gain). Now (4.2) may be rewritten as: 

(4.6) 

How can we solve for g so that an oscillation results? Referring to Theorem 7, we see that 
this will occur if the second Routh-Hurwitz determinant A2 = 0. The lower order 
determinants must, of course, be greater than zero, or the equilibrium point will be 
unstable. To carry out the computation, we would first determine the coefficients of the 
characteristic equation for (4.6) and then form the Routh-Hurwitz determinants. Finally, 

5 
7 

g 

~g 
- 5 

7 

7 \ 
-*) 
- 5 / 

(Ei 

\E2 

U 
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Fig. 4.1 A cyclical three-neuron network in which each neuron excites the next and is inhibited by the 
previous neuron. 

we would have to solve the algebraic equation for A2 = 0 to find the value of g that causes 
oscillations. 

Fortunately, all of this tedious calculation can be done using MatLab script Routh_ 
Hurwitz.m. Before using Routh_Hurwitz.m, it is first necessary to type the coefficients of 
the A matrix into the function Hopf.m (representing the unknown as G), and then save this 
function. Now run Routh_Hurwitz.m, and you will be prompted for a 'Guess' or first 
approximation at the solution, which should be a positive real number in this case. The 
program first finds a value of G that causes the Routh-Hurwitz determinant A#-i = 0 to 
satisfy Theorem 7. The value is G = 17 in this case. The Routh_Hurwitz.m script then uses 
this G value in the A matrix to calculate all of the Routh-Hurwitz determinants and find 
the eigenvalues. Finally, it indicates whether the equilibrium point is asymptotically 
stable, unstable, or a center. In this example, the eigenvalues are -15 and ± 20.78i, so the 
neural responses all have the general form: 

Ek = / le-1 5 ' + 5cos(20.78?) + Csin(20.78?) (4.7) 

where k = 1,2, 3. So the solution to (4.6), which is described in a three-dimensional state 
space, decays onto a two-dimensional surface within that space where the solution 
oscillates sinusoidally. Note that the frequency of this oscillation is reported in radians; 
conversion to Hz requires division by 2-7T. Thus, Theorem 7 has been used to determine 
the inhibitory synaptic strength that will cause oscillations in the network depicted in 
Fig. 4.1. 

4.3 Oscillatory control of respiration 

Oscillations abound in the neural control of movements. Walking, running, and swim
ming are all governed by networks of motorneurons that generate periodic responses 
causing the various muscles involved to contract in an appropriate and repetitive 
sequence. Here we shall examine a neural oscillation that most of us take for granted: the 
control of respiration. Anatomical and physiological data (Cohen, 1968) suggest that 
respiration might be controlled by a mutually inhibitory network similar to that illu
strated in Fig. 4.2. Neuron 1 in this network inhibits neurons 2 and 3 but has no effect on 
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Fig. 4.2 Four-neuron network for respiratory control involving sequential neural disinhibition, 

neuron 4, from which it receives inhibition. These interactions are repeated for the other 
neurons. This is a sequential network that involves inhibition but also disinhibition. To 
appreciate this, note that inhibition of neurons 2 and 3 by neuron 1 shuts off all inhibition 
to neuron 4. 

To analyze this network and determine the inhibitory strengths that will produce a 
respiratory oscillation, let us assume that the inhibitory synaptic weights between adja
cent neurons are - 5 and that each neural response will decay to zero at a rate of - 3 in the 
absence of stimulation. What strength —g must the diagonal inhibition in the network 
have to generate periodic behavior? The system of four coupled linear neural equations is: 

d 
d? 

(Ei\ 
E2 

E3 

\EJ 

(~3 

- 5 
-g 

\ o 
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- 3 
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- 3 
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0 
" 3 / 

/£A 
E2 

E, 

W 
(4.8) 

Type the A matrix into Hopf.m (again using G for the unknown), save this function, and 
run Routh_Hurwitz.m. The program reveals that G = 3 will generate an oscillation of the 
general form: 

Ek = ,4e-' + 5 e - " ' + Ccos(5?) + Dsin(5?) (4.9) 

where k= 1,2,3,4. Assuming that ? is in seconds the oscillation frequency is 5/(2TT)= 
0.8 Hz, about right for respiration. Here again the Routh-Hurwitz criterion in Theorem 7 
has found a parameter value that produces a neural oscillation. As the first two terms in 
(4.9) die out with increasing ?, the oscillation occurs on a two-dimensional surface in the 
four-dimensional state space of the system. These examples will generalize to nonlinear 
neural networks, because Theorem 7 can be employed in conjunction with the Hopf 
Bifurcation Theorem (see Chapter 8). 

4.4 Feedback with delays 

A final, very important example of oscillations in neural systems is related to delays 
in feedback loops. The negative feedback loop between horizontal cells and cones 
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(Chapter 3) generates an asymptotically stable spiral point. Can this network also pro
duce an oscillation? Consider the very general linear feedback network between an 
excitatory neuron E and an inhibitory neuron I. The equations are: 

d £ _ 1 
d? re 

- = -< 
dt V 

-E - al) 

(4.10) 

-I+bE) 

For a > 0, b > 0, eqn (4.10) describes a negative feedback loop as illustrated in Fig. 1.3. 
The A matrix is easily be seen to be: 

^ U T E -i/n) <4"> 
so the eigenvalues are: 

X = JJl + L)Jte-?-4ab™ (4.12) 
2 \ r E TiJ 2TETI 

As real(A) < 0, all solutions to eqn (4.10) must be decaying exponential functions of time, 
and so oscillations are impossible in this two component feedback loop. The reason for 
this is that both E and I decay exponentially with their respective time constants, as 
required for physiological plausibility. (It is, of course, possible to generate oscillations in 
an idealized second order system such as a spring without any frictional resistance.) 

Does this analysis indicate that linear feedback systems can never oscillate? To answer 
this, suppose that physiological conditions caused a delay (for example, an axonal con
duction time delay) in the feedback loop. To represent such a delay exactly in eqn (4.10), 
however, becomes extremely complex. In fact, differential equations with delays are 
infinite-dimensional dynamical systems! You can convince yourself of this fact from the 
following argument. An /V-dimensional system requires TV initial conditions, one for each 
variable at time ? = 0. If there is a delay in the system of say 5 ms, a continuum of values 
must be specified between ? = —5 ms and ? = 0 to specify the initial state of the system. 
Hence, dynamical systems with true delays become extraordinarily complex, and the 
interested reader is referred to discussions by Glass and Mackey (1988), MacDonald 
(1989), and Milton (1996). 

As a simplified approach to the problem, suppose we take our cue from the fact that 
delays increase the dimensionality of a dynamical system. This increase is certainly infi
nite, but let us be modest and introduce just one additional differential equation to 
approximate the delay by defining the variable A for delay. Before seeing the effect this 
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has on eqn (4.10), let us see how an additional equation alters the response of a single first 
order equation. Consider therefore: 

dx 
d7 

dA 
~d7 

-x + 
(4.13) 

( - A + A-) 

where 6 will approximate the delay time lag in milliseconds, and the initial conditions 
A(0) = 0 and A(0) = 0. Note that the equation for A has been constructed so that A = x in 
the steady state, a requirement that any delay must meet. The first equation was solved in 
Chapter 2, and the second can also be solved using Theorem 1 with the results: 

A ( ? ) = 1 -t~'/T 

Alt) 
rt-'/T 6t-'/d 

r + r 
(4.14) 

assuming r^6 (the solution involves critical damping otherwise). Now let T = 10 ms and 
£ = 5 ms and examine the solutions plotted on the left of Fig. 4.3. It is clear that the 
response A lags behind x(t), which is required of a delay. The figure also plots x(t) with a 
true 5 ms delay to show that A(?) with 6 = 5 ms provides a modest approximation to the 
delay. If a more accurate approximation is desired, one can always include a chain of 
additional delay stages in eqn (4.13). For example, with four delay stages one would set 
6= 1.25 ms in this case, and the approximation to a true delay is greatly improved as 
shown on the right side of Fig. 4.3. In the limit of an infinite number of stages our approx
imation would be exact (see below). Remember, however, that in all computer simula
tions neural time delays are de facto represented by a finite number of stages simply 
because computers can only calculate a result at a finite number of time points. Thus, com
puter simulations reduce to embellishments of the delay approximation in eqn (4.13). 

Four delay stages 

4 0 50 

Fig. 4.3 Solid lines plot approximations to a 5 ms time delay by the introduction of one (left) or four (right) 
additional differential stages A as in (4.13). For comparison, an actual 5 ms delay of \(t) (long dashes) is also 
shown (short dashes). Additional stages increase the accuracy of the approximation. 
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For most purposes the addition of one or two delay stages in the manner just described 
will permit a satisfactory approximation of delay effects on dynamics. (As emphasized by 
MacDonald (1989), however, a very large number of stages is sometimes necessary to 
explain all aspects of a true time delay.) Let us return to the feedback system in (4.10) and 
introduce a delay before the inhibition I begins to exert its effect. If we let a = 2, b = 8, and 
the time constants be 10 ms and 50 ms for E and I respectively, the equations describing 
the system become: 

(4.15) 

The presence of the delay stage A can be represented in a simple neural diagram like 
Fig. 4.4. Is there any value of the delay time 6 that will produce an oscillation? The matrix 
for (4.15) is: 

dE 
~di = 

d/ 

d?~ 
dA 
~d7" 

4< 
=*< 

-V-

-E-2A 

-I+ZE) 

A + I) 

1/10 
8/50 
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-1/50 

\/6 

-1 /5 
0 

-\/6 
(4.16) 

The Routh-Hurwitz criterion in Theorem 7 can be used to solve for 6 by entering matrix A 
into the MatLab function Hopf.m (always with G as the unknown), saving this func
tion, and then running Routh_Hurwitz.m. You will find that <5 = 7.61 ms will cause solu
tions to (4.15) to be periodic with a frequency of 0.133, which is 0.133/27T cycles/ms or 
21.2 Hz. Thus even a short feedback lag in eqn (4.15) can lead to rapid oscillations. 
Oscillations caused by delays in neural transmission may well be one cause of the 
tremors exhibited by patients with multiple sclerosis, a disease in which axonal trans
mission is known to be slowed down (Beuter et al., 1993). Indeed, Mackey and Milton 
(1987) coined the term 'dynamical diseases' to refer to physiological systems that 
become dysfunctional due to alterations such as increased time delays. One cautionary 
note: not all feedback loops are guaranteed to oscillate for some value of 6 in eqn (4.15). 
Whether an oscillation can occur or not is dependent on the feedback gain as well, an issue 

x_ 

Fig. 4.4 Negative feedback loop with a delay stage A introduced between the I and E neurons. The network 
is described by (4.15). 
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explored in the problems. If a given feedback system cannot oscillate, Routh_Hurwitz.m 
cannot find a solution. 

For readers with a more advanced background, here is a sketch of the proof that 
introduction of an increasing number of first delay stages N as in (4.13) becomes an 
exact mathematical description of a delay in the limit N-> oo.lt was shown in Chapter 2 
that a cascade of (N+ 1) first order stages with identical time constants r produces the 
response R{t): 

R{t)=-LQN^ (4.17) 

When integrated this function has unit area for all N > 1, and the peak always occurs at 
7"deiay = NT\ For any desired delay, therefore, let us require that r = rde|ay/A. This is known 
as the gamma function approximation to delays (MacDonald, 1989). Now, in the limit 
as N^oo, (4.17) is a function with unit area, infinitesimal width, and infinite height 
centered at rdeiay. This unusual function is the Dirac 6 function (Dirac, 1958) and is a form 
of 'generalized function' (Lighthill, 1958). The convolution of 6(t - rdeiav) with any 
function/(?) produces exactly/(? - rdeiay). which is what we wanted to prove. Limitations 
in using the gamma function with small N to approximate delays are discussed by 
MacDonald (1989). 

4.5 Synopsis 

This chapter has been short because almost all attributes of linear second order systems 
generalize to higher order systems. The major differences between second order and 
higher order linear systems are practical: eigenvalues and eigenvectors are no longer as 
simple to compute, although MatLab™ is an enormous aid here. Some scientists 
apparently believe that ready access to computers has obviated the need to understand 
and utilize analytical approaches to dynamical systems. This perception is misguided for 
two reasons. First, a scientist cannot hope to create and analyze a neural model derived 
from her/his research without a sophisticated appreciation of the underlying mathe
matics. Second, without analytical techniques, attempts to find parameter values that 
generate particular types of solutions, such as the oscillations in our simulation of 
respiration, can degenerate into laborious trial-and-error computer simultions. Begin
ning in the next chapter, we shall integrate computer simulations with nonlinear analysis, 
emphasizing the complementary insights to be gained from each. 

4.6 Exercises 

1. Consider the following equation: 

dX 
d̂7 

-3 
b 
4 

http://oo.lt


Higher dimensional systems 59 

(a) Determine the value of b that will cause the system to oscillate, (b) Write down the 
general form of the analytical solution in terms of exponentials, etc. (Just write down the 
combination of functions with their eigenvalues that will be involved; you need not solve 
for the eigenvectors.) 

2. Extend the example of delays in the feedback system in eqn (4.15) by introducing a 
second delay between the excitatory neuron and the inhibitory neuron in addition to the 
delay already present. This will produce a fourth order system. Assume that the constant 6 
is the same for both delay stages, and solve for 6 to produce an oscillation. How does the 
total feedback delay, 26, compare with the delay calculated for just one stage in the 
chapter? 

3. Consider the following example of a feedback system in which there is a delay in neural 
transmission from the excitatory neuron E to the inhibitory neuron I. The strength of the 
feedback inhibition depends on a parameter g. Determine how the delay depends on g by 
solving for 6 to produce oscillations for the following values: g= 10,15,25. Also deter
mine the frequency of the oscillation in Hz (not radians) in each case assuming the time 
constants are in ms. What trends do you observe as the inhibitory feedback becomes 
stronger? 

5-5<-'+A> 



Approximation and simulation 

Systems of linear differential equations with constant coefficients can be solved exactly in 
terms of sine, cosine, and exponential functions, with the occasional polynomial thrown 
in when several eigenvalues are identical. Why, then, is it necessary to approximate the 
solutions of differential equations on a computer? There are several answers. First, if the 
input or stimulus to the system is a sufficiently complex function of time, it may be 
impossible to evaluate integrals such as those in Theorems 1 and 3 exactly. Indeed, this is 
true when a sinusoidal stimulus provides input to the Naka-Rushton function in eqn 
(2.11). So approximation is necessary if we wish to determine the response of this system. 
A second case is that of linear systems that represent interactions among many compo
nents. Although we can in principle write down the solution in terms of sines, cosines, and 
exponentials as indicated by Theorem 4, in practice it may be more efficacious to simulate 
the response for the particular initial conditions of interest. 

The final, and most important, reason for employing approximation methods is to 
obtain solutions to systems of nonlinear differential equations. As will be seen in sub
sequent chapters, virtually all of the truly interesting neural problems are inherently 
nonlinear. Nonlinear differential equations do not generally have solutions that can be 
written down in terms of known functions like exponentials. So the only way to make 
detailed predictions about the temporal evolution of nonlinear neural systems is by 
resorting to simulation. Therefore, let us examine some accurate approximation methods 
of general utility. 

5.1 Euler's method 

Let us focus our attention on the problem of solving a first order differential equation of 
the form: 

d.v 
- 7 =F( .v ,?) (5.1] 

where F can be a linear or nonlinear function of x and ?. At ? = 0 the initial condition is 
A(0) = XQ. In most approximation methods the time variable is divided into a series of 
very small steps spaced duration h apart. For any time ?,v+1 and tN this produces the 
relationship: 

?w+i - tN = h so tN = Nh (5.2) 
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A finite number of time steps must be used to reduce the problem to a finite number of 
calculations suitable for a computer. 

The problem of approximating x may now be formulated thus: given the value of x(t^), 
how do we approximate the next value, x(tN+/) = x(tN + h)l Euler's insight was to use the 
Taylor series approximation to x(t) but limit the expansion to the first term in the 
polynomial. Thus: 

x(tN + h) »x(tN)+h 
d.v 
d7 

(5.3) 

where dx/dt is evaluated at ?#. As the value of the derivative in this expression is given 
explicitly by (5.1): 

x(tN + h) « x{tN) + hF(x{tN), tN) (5.4) 

Equation (5.4) is Euler's approximation to the exact solution of (5.1). Using (5.2) and 
(5.4), we can start at ? = 0 and use the value x(0) = An to calculate the value of x(h). The 
process is then iterated to estimate successive values of A. 

As an example, let us take an equation that was solved exactly in Chapter 2: 

dx = 1 

d? 20v 

Euler's approximation from (5.4) is: 

+ 40e-' /20) with A - ( 0 ) = 0 (5.5) 

A(? + A) « x ( ? ) + - ( - * ( ? ) +40e-'/2 0) 

As h is divided by the time constant 20 ms above, h should be chosen to be some rea
sonably small fraction of this time constant. As a first choice, let /i = 4ms or one-fifth of 
the time constant. The result of simulating x(t) for 40 ms (i.e. 10 time steps) is plotted in 
Fig. 5.1, where only part of the ordinate is shown to emphasize differences. Euler's 
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Fig. 5.1 Illustration of Euler's method with two different time steps h compared with the exact solution 

to (5.5). 
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method progressively overestimates the exact solution in this case and produces a value 
of 11.94 after 40 ms. Compared to the exact value of 10.83, this represents an error of 
10%, not too impressive. The situation is improved by reducing the step size to h =1 ms, 
which produces an estimate of A =11.10 at 40 ms, an error reduction to 2.5%. Thus, the 
approximation has improved by a factor of 4.0 by reducing the time step to a quarter of 
the original value, but this improvement is at the cost of having to do calculations for 40 
time iterations instead of 10. This is always the issue in approximating the solution to 
differential equations: the simulation will become more and more accurate as h is made 
smaller, but this multiplies the number of computations and hence the amount of com
puter time for the simulation. Life is too short to use excruciatingly small time steps! 

5.2 Runge-Kutta methods 

Although Euler's method can be used for simple problems if the step size h is sufficiently 
small, it is rarely used in practice, because more accurate results may be obtained with the 
same amount of computation using other methods. Furthermore, around a steady state 
that is a center, Euler's method is actually guaranteed to produce an unstable spiral 
solution regardless of step size h, a phenomenon investigated in the problems. The reason 
for the inaccuracy of Euler's method is that (5.4) only uses a straight line approximation 
to the solution at each time to obtain the approximation at the next time step, a con
sequence of truncating Taylor's series in (5.3) after the linear term in h. One might guess 
that greater accuracy could be obtained by retaining additional terms in the Taylor series 
approximation. This guess is correct, and it forms the basis for Runge-Kutta approxi
mation methods. There are several different orders of Runge-Kutta methods, the order 
being determined by the highest power retained in the Taylor series approximation. The 
fourth order Runge-Kutta method is the most common, and we shall use it for neural 
simulations later in this book. To simplify the algebra, however, let us examine the 
second order case. In addition, let F(x) in (5.1) be independent of ?, which will simplify 
notation and highlight the conceptual aspects of the derivation. 

To derive the second order Runge-Kutta approximation, let us first expand the Taylor 
series in (5.3) to include the second order term: 

.v(?.v + h) « A-(?,V) + l'~ + ~-A (5-6) 
d? 2 d?-

Substituting for d.v/d? using (5.1) gives: 

x{tN + h) « A(?,V) + hF + — — (5.7) 

This strategy seems promising, but it now becomes necessary to evaluate dF/dt. If Fis a 
well-defined mathematical function, the differentiation might be carried out analytically. 
(Note that F depends on ? implicitly through its dependence on x(t) even if ? does not 
appear explicitly in F.) However, this can lead to very messy expressions, especially when 
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higher order Runge-Kutta methods are considered. For this reason the Runge-Kutta 
method employs a very clever trick to avoid any explicit calculation of dF/dt. Assuming 
for simplicity that Fdepends only on x and not ?, the chain rule for differentiation yields: 

dF _ dE d.v _ dF 
dt d.v d? dx 

so 

x(tN + h)^x(tN)+hF + ~F^ (5.8) 

To avoid having to compute dF/dx, let us see if we can find an approximation of the form: 

x{tN + h) « x + ahF + bhF{x + chF) (5.9) 

What we have done here is to replace the lr term in (5.8) by a function of a function, 
F(x + chF). Three constants, a, b, and c, have been introduced into (5.9), and these must 
now be chosen to make (5.9) identical to (5.8). As /; is very small, we may now use Taylor's 
series to expand the last term in (5.9), retaining only the first order term: 

dFdx dF 
Fix + chF) « F(x) + h — — = Fix) + h — cF (5.10) 

d.v d/i d.v 

Substituting this into (5.9) gives: 

dF 
x(tN + h) « A + (a + b)hF+bch2F — (5.11) 

Looking at (5.8) and (5.11), one can see that the two will be identical if: 

a + b=\ and be = \ (5.12) 

Note that these conditions on a, b, and c do not uniquely specify the solution, so one more 
equation is needed. As there is no mathematical reason for preferring one choice over any 
other, aesthetic considerations are usually indulged by setting a = b. Therefore, (5.12) 
yields: a = 1/2; b = 1/2; and c = 1. Using these values in (5.9) gives: 

x{tN + h)*x + ^F+^F(x + hF) (5.13) 

We have now shown that (5.13) is identical to the second order Taylor expansion in (5.6) 
and (5.7), but (5.13) only involves the function Fand none of its derivatives. 

Equation (5.13) is the second order Runge-Kutta approximation. Although (5.13) 
may seem strange, it actually has a very simple and intuitive interpretation. Recall from 
(5.1) that F=dx/dt. Substitution of this relationship back in the two occurrences of 
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Fin (5.13) yields: 

h dx h I , dx 
AN + h)*x + - - + -F(x + h -

so 

h (dxN dxAr+i] 
x(?„ + / ? )«x + - | — + — j (5.14) 

This indicates that the second order Runge-Kutta approximation to x( ? + /z) is similar to 
the Euler method in (5.4), except that two estimates of the slope are obtained and aver
aged. The first estimate is obtained at ?#, and the second one is obtained based on Euler's 
approximation of x(?/v + h). 

Let us look at this graphically using a very simple equation: 

^ = - 7 5 W l t h *(°) = ] (5-15) 

We shall take It = 4 ms, which is large but will emphasize the principle of the Runge-Kutta 
method. This proceeds through four steps (a-d) to approximate x(h) = x(4) from x(0). 
(a) Calculate the slope F(x(0)) (depicted at (1) in Fig. 5.2 as a heavy line): 

nm)^-i (5..6) 
(b) Use this estimate to compute a first approximation of Xi(4) using the equivalent of 
Euler's formula (5.4) (open point at (2) in Fig. 5.2): 

x, (4) * x(0) +/iF(x(0)) = 1 + 4 ( - T V ) = 0.6 (5.17) 

(c) Now use xi(4) to compute a second estimate of the slope F(x(4)) (heavy line at (3) in 
Fig. 5.2): 

F ( x l ( 4 ) ) = ^ = - ^ = - 0 . 0 6 (5.18) 

(d) As indicated in (5.14) F(x(0)) and F(x, (4)) from (5.16) and (5.18) are now averaged to 
obtain the second order Runge-Kutta estimate of x(4) (solid point at (4) in Fig. 5.2): 

x(4) « x(0) + - {F(A(0)) + F(.v, (4))} = 1 + A- (-0.10 - 0.06) = 0.68 (5.19) 

These four steps are shown in Fig. 5.2 along with both the Euler approximation (dotted 
line) and the second order Runge-Kutta solution (dashed line). These approximations 
are compared with the exact solution (solid curve), which is x( ?) = exp( — ?/10). At the end 
of one 4 ms time step the true result is 0.67, and the Runge-Kutta approximation is 0.68, 
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Fig. 5.2 Graphical representation of the second order Runge-Kutta method. Numbers 1-4 refer to the four 
steps embodied in the approximation (5.13) or (5.14). 

which is an error of 1.5%. In contrast, Euler's method, which was used in (5.17 gives an 
estimate of 0.6, which is in error by 10.5%. To be fair, the Runge-Kutta method required 
twice as many calculations as Euler's method, so the Euler approximation should be 
computed using two steps of 2 ms each for comparison. The result is easily calculated to be 
0.64, which is an improvement over 0.60, but still is in error by 4.7%. Thus, even for the 
same number of calculations, the second order Runge-Kutta result with a 4 ms step size is 
3.0 times more accurate than Euler's method with a 2 ms step size. 

We can also apply the second order Runge-Kutta routine to (5.5) and compare it with 
Euler's method. With a step size /? = 2ms, the error after 40 ms is 0.1%, which is much 
better than the 2.5% error of Euler's method using a step of h = 1 ms. Here again, Runge-
Kutta is superior to Euler's method for the same number of calculations. This is the reason 
Euler's method is never used in serious work: it is a waste of effort! 

5.3 Errors in approximate solutions 

The previous examples demonstrate that the second order Runge-Kutta approximation 
is more accurate than Euler's method even when Euler's method uses half the step size so 
that the same number of computations are required. This raises the question: just how 
accurate is the Runge-Kutta approximation? This might seem to be impossible to answer, 
as the exact solution will generally be unknown, so there is only the approximation itself to 
rely on. However, we can still obtain a useful estimate of the error. To do so, recall that the 
second order Runge-Kutta method in (5.6) is based on truncation of the Taylor series 
after two terms. This means that the error in the computation will mainly depend on the 
next term, which is proportional to h}. To obtain an estimate of the error, suppose we 
approximate a solution twice: once with step size It and once with half the step size, h/2. 
There will be twice as many steps in the latter case, but the simulation will certainly be 
more accurate. If x(? + h) is the true solution after a step h, and xi (? + h) and x2(? + h) 
represent the two approximations using either one step h or two steps each of size h/2, 
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we have approximately: 

x{t + h) ^ xi(t + h) + h3n 

/ A \ 3 (5.20) 
X(? + / ! ) « A 2 ( ? + /Z) + 2 ( - J n 

The constant Q that appears here is related to the maximum value of the third derivative 
of x(?) in the interval according to the Taylor series formula. Although 0 is unknown, 
it will be the same number regardless of the step size chosen. Note that (h/2) is multiplied 
by 2 in the second equation, as two h/2 steps were required to cover the interval h. 
If both of these approximations are treated as equalities and A = x2 — x\, simple 
algebra gives: 

A = x2(? + /,) -xi(t + h) = / i 3 f ? . - 2 b | j Q, 

so 
(5.21) 

A = ±hiQ 

As A is measured by simulating the solution twice, once with step It and once with step h/2, 
(5.21) can be substituted for the error term containing fi in (5.20): 

2 u ) n = y s o X(? + / I ) « A - : ( ? + / ; ) + | 

This means that the estimated error is given by: 

A 
Error « - (5.22) 

Thus, the error of the second order Runge-Kutta method using the smaller step size h/2 is 
approximately A/3. It is important to note, however, that this is the error for a single step. 
Error will, of course, be cumulative in any simulation where multiple steps are involved, 
so it is prudent in neural simulations to take A itself as an estimate of the overall error 
involved in the computation. 

As an example, suppose we use second order Runge-Kutta to simulate (5.5) for step 
sizes of both It = 2ms and It = 4ms. After 40ms (20 steps for x2 and 10 steps for A,), 
xi(40) = 10.778 and A2(40) = 10.816, so the estimated error is: 

Error « —= 0.0127 (5.23) 

In this case the exact solution is 10.827, which is indeed within the estimated range. 
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It is also instructive to apply this same error estimation procedure to Euler's method. 
Recalling that Euler's method in (5.3) truncates the Taylor series after the first term: 

x(t + h) « x i (? + /?) + h2n 

/A2 (5-24) 
x(? + /o~x 2 (? + /i) + 2 ( - ) n 

Repeating the procedure used to obtain (5.22) reveals that the error in Euler's method is 
approximately: 

Error w A (5.25) 

When applied to (5.15) and Fig. 5.2, Euler's method with a 4 ms step produced the esti
mate xi (4) = 0.60, while Euler's method with two 2 ms steps yielded x2(4) = 0.64. Thus, 
A = 0.04, the error estimate by (5.25). As the exact value is x(4) = 0.67, the computed 
error estimate is again appropriate. From a comparison of (5.22) with (5.25), one might 
expect the error from Euler's method to be about three times larger than that from second 
order Runge-Kutta for the same number of calculations, which is correct. 

5.4 Fourth order Runge-Kutta 

The improvements in accuracy obtained with second order Runge-Kutta approxima
tions as compared to Euler's method suggest that the former technique might be profit
ably extended to higher orders. This has indeed been done, and third, fourth, and fifth 
order Runge-Kutta formulas are tabulated in various books. Each of these is derived in a 
manner analogous to the derivation of (5.13) from (5.6), except that the initial Taylor 
series expansion is extended to third, fourth, or fifth order terms. The contemporary 
standard in research is generally the fourth order Runge-Kutta scheme, and accordingly 
we shall standardize on it in the rest of this book. The fourth order Runge-Kutta method 
provides a significant improvement in accuracy over either second or third order methods 
for the same amount of computation, and it requires only four computations at each step. 
In contrast, fifth order Runge-Kutta requires six computations per step and thus is less 
efficient for a minimal gain in accuracy. 

The formulas for the fourth order Runge-Kutta method are summarized below. Given 
x(?) defined by eqn (5.1), the approximation to x(? + h) based on terms in the Taylor series 
polynomial up to /i4 is: 

x(? + h) « x(?) + \ [Ki + 2K2 + 2Ki + KA) 
6 
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where 

Ki =F(x(?),?) 

h h 
A l[x{t)+-Kut + -

h / , ( 5 2 6 ) 

Ki=F\x(t)+-K2,t + 2 

K4 = F{x(t)+hK3,t + h) 

From the previous discussion, one can see that this formula again has a simple graphical 
interpretation. First we calculate dx/d? at time ?, which is K\. Next we use A în Euler's 
formula (5.4) to move half way through the time interval to ? + h/2, where we again 
calculate dx/d?, obtaining K2. Repeating this procedure again gives us Ky, and K^ is then 
used with Euler's formula to obtain an estimate of the slope K4 at the end of the interval. 
Finally, a weighted average of these four estimates of dx/d? is used to compute x(? + It). 

As an example, let us again approximate (5.15) with It = 4 ms. Simple calculation gives: 

ft = "To Wlth A"(0) = 1 

so 

K, =F(1) = -0.10 

K2 = F(0.8) = -0.08 

Ki = F(0.84) = -0.084 

K* - F(0.664) = -0.0664 

(5.27) 

so 

4 
x(4) « x(0) +-(-0.4944) = 0.6704 

6 

The slopes K\ - K4 are plotted at the points where they are calculated in Fig. 5.3 along 
with a comparison to the exact result. As the exact solution is x = exp(-?/10), 
x(4) = 0.67032. Thus, the fourth order Runge-Kutta estimate is accurate to 0.01% here. 

As the fourth order Runge Kutta routine is based on the Taylor series expansion up to 
fourth order, an estimate of the error is obtained from a comparison of simulations with 
step sizes of h and h/2, called x\ (?) and x2(?) respectively. Using the approach developed 
earlier, the fourth order error estimate is: 

A x2(t)-xi(t) 
Error « - = 2±L^ lK (5.28) 

Both Euler's method and the various Runge-Kutta routines can be generalized to a 
differential equation of any order that is cast into normal form. Taking the case of two 
coupled differential equations as an example, the fourth order Runge-Kutta approx
imation requires application of (5.26) to both equations simultaneously. The relevant 
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Fig. 5.3 Graphical representation of the four values of d.v/dr, K.1-K4, calculated in the fourth order Runge-
Kutta approximation (5.28) to eqn (5.15). The exact solution and the estimate of ,v(4) are also shown. 

formulae thus become: 

so 

dx dv 
— = F(x,y,?) and -^ = G(x,y,t) 

x(t + h) « x(?) +-{KX+ 2K2 + 2K3 + K4) 6 
h 

y(t + h) « y(t) +7(Li+ 2L2 + 2L3 + L4) 6 

where 

K{ =F(x,v,?); 

K2 
h „ h T h 

Ki = F\x + ^K2,y + \L2,t + ~ 

K4 = F(x + hK3,y + hL3, t + h); 

Ex =G(x,y,t) 

L2 = G\x + -Ki,y + -Li,t + -

f h h h 
Li = Gix + -K2,y + -L2,t + -

L4 = G(x + hK3,y + hL3, t + h) 

(5.29) 

The accompanying MatLab script, RungeKutta4.m, implements (5.29) for any number 
of equations (see Appendix for details). In calculating the error in (5.29) it is apparent that 
there will be one value of A for x and another for y. It is prudent to use the larger of these as 
an estimate of the overall error of the simulation. 

5.5 Variable step size routines 

There is one further embellishment to the fourth order Runge-Kutta routine that bears 
mentioning. As the error in (5.28) is computed from the Taylor polynomial term in h5, 
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which is the first term ignored in fourth order Runge-Kutta simulations, it is possible to 
use A to estimate a new value of It, hnew, in order to attain a desired improvement in 
accuracy. It must be recognized, however, that A represents the error accumulated over N 
steps of the simulation. If the calculation is carried out to a final time T = Nh, then: 

~ = Nh5M = h4TM (5.30) 
15 

where M is related to the maximum value of d5x/d?5. Thus, although the error per step in 
fourth order Runge-Kutta is proportional to h\ the cumulative error is proportional to 
It4. If we denote the new desired error by e, then the new value /inew that should give this size 
error obeys the same relationship as (5.30): 

y5 = >t,JM (5-31) 

where M is approximately the same as in (5.30). By now taking the ratio of (5.31) to (5.30) 
and solving for hnevl, we obtain the formula: 

l e 11/4 

/'new < h\-\ (5.32) 

The < sign has been introduced to emphasize both that this is an approximate result 
and that e is presumably the maximum desirable error. When one employs (5.32) to 
reduce error, /;new should be reduced to at least h/2 in order to have a significant effect. 

In the neural simulations following in later chapters, it is generally adequate to com
pute a solution with both h and 2/J as step sizes so that (5.28) may be used to estimate the 
error in the /; step size simulation. If this is too large, then (5.32) may be used to estimate 
/?new with which to repeat the simulation. A final simulation with 2/;new as the step size may 
be used to check that the new error calculated from (5.28) is indeed within the desired 
tolerance. If necessary, the procedure can be repeated. A more sophisticated approach is 
to use (5.32) at each step in the Runge-Kutta simulation to adjust the step size h to 
maintain a desired degree of accuracy throughout the computation (an adaptive step size 
routine). This is generally more efficient than using the smallest h necessary for a desired 
degree of accuracy, but it is no more accurate. Fixed step size methods will therefore be 
adopted here, and the interested reader is referred to Press et al. (1986) for further con
sideration of adaptive step size methods. It is also worth mentioning that MatLab 
implements an adaptive step size routine in the ode45() procedure, which the interested 
reader is invited to explore. 

5.6 Exercises 

1. In Chapter 2 we developed an equation for a simple neuron using the Naka-Rushton 
function S(P) defined in (2.11). Simulate the solution of the following differential 
equation using RungeKutta4.m: 
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{ 100F2 „ 

0 for P < 0 

P(t) = 20sin(27rl0?) 

where both the time constant and ? are in seconds. Let R(0) = 0 for your initial condition. 
Run your simulation for 1.0 s and plot the results. Use a time step/? of 0.004 s (i.e. 4 ms). 
Obtain an error estimate of your result by repeating the simulation with h — 2 ms. You 
have just modeled the response of a simple cell in monkey visual cortex (Movshon et al., 
1978)! 

2. The program Euler.m implements an Euler approximation to the simple equations: 

d? 
d.v . 
dt 

Assume the initial condition is x(0) = 2, v(0) = 0, and write down the exact solution. 
Next use Euler.m to simulate these equations for time steps It = 0.1, 0.01, and 0.001. 
Does the Euler approximation produce a trajectory that is stable, asymptotically stable, 
or unstable? Does the stability of the Euler approximation agree with that of the exact 
solution? Why or why not? (Hint: sketch a phase plane trajectory for the exact solution 
and discuss how the Euler approximation deviates from this.) This problem will also show 
you how to plot phase plane solutions for any two variables in a simulation. 

3. Derive the error estimate (5.28) for the fourth order Runge-Kutta procedure. 

4. The following equation is known as the van der Pol equation: 

d2x , dv 
d ^ - 5 > d ? + 9 * = 0 

This was the first mathematical model proposed for cardiac rhythms, and it has also been 
used to simulate brain waves. Solve this equation using RungeKutta4.m (convert to 
normal form first) with the initial conditions x(0) = 1 and dx/d? = Oat? = 0. Carry out the 
simulation up to time ? = 10. First choose your time step/; = 0.05. Next, make an estimate 
of the error of your approximation. Using the formulas in the chapter, reduce h until your 
error estimate is less than 0.001. Be sure to indicate the value of/; used, how you arrived at 
it, and your final error estimate. Plot both x(?) and the phase plane (x, dx/d?) for your final 
simulation. 



Nonlinear neurodynamics and 
bifurcations 

We have completed our survey of linear dynamical systems and have developed simu
lation methods suitable for application to either linear or nonlinear systems. This chapter 
begins our exploration of nonlinear dynamics in neural systems. The chapter will develop 
the basic approach, which relates the local properties of nonlinear systems to those of 
associated linear systems. Three different ways in which two neurons can interact will be 
discussed next: (1) negative feedback in a divisive gain control, (2) mutual excitation in 
short-term memory, and (3) mutual inhibition in neural decision making. It will also be 
shown that neural adaptation can lead to memory loss, a topic that will introduce 
bifurcation theory. 

Neurons will be described by the temporal variation of their spike rates in this chapter 
rather than at the level of individual spikes. There are several reasons for this. First, many 
principles of neurodynamics can be effectively studied at the spike rate level of descrip
tion, and the mathematics is considerably simplified. Second, spike trains are examples of 
nonlinear oscillations mathematically, and so this level of description must await 
development of that topic in Chapter 8. Finally, experimental data reported as histograms 
and many theoretical problems in neuroscience are in fact described as spike rates. 

6.1 Steady states and isoclines 

Let us begin with a general mathematical description of a two interacting neurons: 

dx, 
- T 7 = F(X,,.Y2) 
H (6.1) 
dx-i 
-77 = G(xux2) d? 

Fand G can be any of a wide range of nonlinear functions of x; and x2, but they must have 
certain properties to insure that (6.1) will have unique solutions. It will be sufficient to 
require that in the region of physiological interest Fand G are both finite and continuous. 
We can even tolerate a finite number of finite discontinuities in For G or their derivatives 
(as was the case in our piecewise linear approximation to an EPSP in Chapter 2). These 
requirements do not limit us to any significant extent, as all physiologically plausible 
systems satisfy these constraints. 

The dynamical behavior of (6.1) will generally be quite complex and will require 
Runge Kutta simulation in order to follow the temporal evolution in detail. However, we 
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can learn an enormous amount about the solutions by studying the nature of the equili
brium points or steady states of the system. As dxi/d? = Oanddx2/d? = Oat a steady state, 
the steady states of (6.1) must satisfy the equations: 

F(*„x2)=0 
G(x , ,x 2 )=0 ' ' 

If this were a linear system, these would be simultaneous linear equations. For a nonlinear 
system, however, each of the equations in (6.2) will describe some curve in the (xi, x2) state 
space of the system, and the intersections of these curves will determine the equilibrium 
points. Equations (6.2) describe the isoclines of the system, a term which literally means 
'equal slope'. Thus, F = 0 describes the locus of points in state space where dxi /dt = 0, so 
all trajectories must cross this isocline parallel to the x2 axis. Similarly, on the isocline 
where G = 0,dx2/d? = 0, and trajectories will parallel the X| axis. Fand G are simulta
neously zero where the isoclines intersect, and this defines an equilibrium point. It should 
be noted here that some authors use the term nullcline instead of isocline to emphasize that 
the slope is null or zero along these particular isoclines. However, isoclines are almost 
never discussed today except for the zero slope case, so the term isocline will only be used 
here in the restrictive sense defined by (6.2). 

6.2 A divisive gain control 

To fix these ideas, let us consider a nonlinear gain control network that employs feedback 
inhibition. This network was originally developed as a cortical divisive gain control to 
explain certain aspects of psychophysics related to orientation selective cells in the visual 
cortex (Wilson and Humanski, 1993). More recently, a similar feedback circuit has been 
used to describe amacrine cell feedback onto bipolar cells in primate and human retinas 
(Wilson, 1997; see Chapter 7). The simple negative feedback network to be described here 
is like the cone, horizontal cell feedback network discussed in Chapter 3, except that the 
inhibition divides the stimulus to the first neuron. As pointed out in Chapter 2, shunting 
inhibitory synapses are well approximated by division. 

Letting B represent the bipolar cell response to light level L and A the amacrine cell 
response, the equations are: 

dB 1 / 
d? ~ TB V 
dA 1 
7 7 " rA

 (" 

L 
B+l+A 

-A+2B) 

(6.3) 

This equation has well-behaved solutions in all regions that exclude A = -\, where the 
right-hand side of the first equation becomes infinite and the solution is not defined. As 
the light inputs L can only be positive or zero, however, it is easy to show that if the initial 
conditions lie in the first quadrant or at the origin, then the system must stay in the first 
quadrant for all future times. That is, if ,4(0) > 0,5(0) > 0,andL > 0 solutions can never 
leave the first quadrant. To prove this, note that whenever B = 0, dB/dt > 0 because A, 
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Fig. 6.1 Phase plane and isoclines (6.4) for eqn (6.3) plotted for L= 10. The unique steady state in the first 
quadrant is located where the isoclines intersect. 

L > 0. Therefore Bmust become positive (or remain zero), but it cannot become negative. 
Similarly, dA/dt > 0 whenever A = 0, so A can never become negative. Thus, all trajec
tories starting in the first quadrant must remain there. 

The isoclines are now obtained by setting the derivatives in (6.3) equal to zero, 
giving: 

L 
B 

1 + A 
and A IB (6.4) 

These are plotted in the state space of this system in Fig. 6.1. The one intersection of the 
isoclines in the first quadrant defines the steady state, which can be obtained analytically 
in this case by solving (6.4): 

2B, B -1 + 71771 (6.5) 

Note that the second root or equilibrium point does not lie in the first quadrant, so it is 
irrelevant to the neurobiology of the problem. Neural systems with multiple steady states 
in the first quadrant will be considered shortly. In the example plotted in Fig. 6.1, L—10, 
so the steady state is at: B = 2; A = 4. 

6.3 Stability of steady states 

Having found the equilibrium point of (6.3), let us now determine its nature (node, spiral 
point, etc.) and stability characteristics. For a linear system this simply requires obtaining 
the eigenvalues from the characteristic equation, but how should we proceed with a 
nonlinear system? The answer turns out to be simple: expand the nonlinear functions in 
(6.1) or (6.3) in a Taylor series evaluated at the equilibrium point and retain only the 
linear terms. This produces an associated linear equation in the vicinity of the equilibrium 
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state: 

dt Vx2 

/ dF 
dxi 
dG 

\cTx 

Eq 

1 'Eq 

dF_ 
dx2 

dG 
dx2 

Eq 

Eq 

(6.6) 

where the partial derivatives in the matrix are evaluated at the equilibrium point and xj 
and x2 are the values of the variables relative to the equilibrium values. This matrix of first 
partial derivatives is called the Jacobian or Jacobian matrix. The Jacobian for any non
linear system of A equations will always be Ax N in size. 

The higher order Taylor series terms in the expansion of F and G will be at least 
quadratic in X| and x2, so the linear terms in the Jacobian will dominate when Xj and x2 are 
sufficiently close to equilibrium. Therefore, you might expect that the linear stability 
analysis of (6.6) would also apply to (6.1) near equilibrium. This is basically correct and is 
captured in the following theorem, which applies to nonlinear systems of any order: 

Theorem 8: Given the nonlinear system described by the equation: 

dX 
d? 

F(X) 

and an equilibrium point at XEq, which is a solution to: 

i ^Ea ) = 0 

calculate the Jacobian to produce an associated linear equation: 

dx 

where 

A = 

d? 

(m 
dx\ 
dF2 

5x7 

Ax 

dFi 
dx-) 
dF2 

dx2 

V 
dFN 

dxN J 

where all partial derivatives are evaluated at XEq. Then sufficiently near XEq: (a) if all 
eigenvalues of the linear system have negative real parts, the nonlinear system is 
asymptotically stable; and (b) if the linear system has at least one eigenvalue with a 
positive real part, the nonlinear system is unstable. In addition, the type of equili
brium point for the nonlinear system, i.e. spiral point, node, or saddle point, will be 
the same as that for the associated linear equation. 
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Two special cases are explicitly excluded by Theorem 8. First, if A has a pair of pure 
imaginary roots and therefore is a stable center (but not asymptotically stable), the the
orem does not apply. Second, if any root of A is zero, the theorem again fails to apply. The 
higher order terms in the Taylor expansion of Fbecome critical when the associated linear 
system has any roots with zero real part. It is also important to note that Theorem 8 does 
not specify just how close to equilibrium one must be for the theorem to apply. 
Determining this requires the use of Lyapunov functions, which will be introduced in 
Chapter 14. 

Let us apply Theorem 8 to the divisive gain control in (6.3). For L = 10, the steady state 
occurs at B = 2; A = 4. Let time constants be 10 ms. Calculation of the Jacobian now 
gives: 

A = 

( 

\ 

1 

"To 
l 
5 

(i + ^r 
\ 

i 

io / \ 

I 

10 

(6.7) 

where the right-hand equality results from evaluation of the Jacobian at the steady state. 
Using LinearOrder2.m, the eigenvalues are A = —0.1 ± 0.089i. Thus, the equilibrium is 
an asymptotically stable spiral point for both the associated linear system and for the 
nonlinear system in (6.3). Given this analysis of (6.3), it is now appropriate to simulate the 
solution using Runge-Kutta methods. Results of simulations using the MatLab script 
DivFB.m are plotted in Fig. 6.2. As can be seen, the solution with initial conditions A = 0, 
B = 0 asymptotically approaches the unique steady state in the first quadrant with a 
damped oscillation, as was predicted by analysis of (6.7). The simulation suggests that 
trajectories starting far from the steady state will approach it asymptotically, although 
this cannot be determined using Theorem 8. Figure 6.2 also shows that the transient 
overshoot of the response is relatively larger when the light intensity L= 100 than it is 
when L= 10. This is a manifestation of the nonlinear dynamics. 
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Fig. 6.2 Responses B(t) in (6.3) to two stimulus levels, L= 10 and L= 100. 
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6.4 A short-term memory circuit 

In the previous example, we analyzed a nonlinear, two-neuron network that had a single 
equilibrium point in the first quadrant. However, many nonlinear systems are interesting 
precisely because they have multiple equilibria, so let us examine such a system now. To 
motivate the mathematical discussion, we shall examine a physiological example invol
ving short-term memory. Consider an experiment in which a monkey is first presented 
with a briefly flashed stimulus, a red or green light in this case. The stimulus then dis
appears, but the monkey is required to wait during a delay until it receives a second signal 
indicating that it is time to respond. The monkey must then make one of two responses 
indicating whether it remembers a red or green stimulus, and it is rewarded if the response 
is correct. This is known as a delayed matching task, because the monkey must remember 
the stimulus during the delay in order to be rewarded. Fuster (1995) has shown that single 
neurons in the temporal and prefrontal cortex of monkeys can be switched on by the brief 
stimulus presentation, and these neurons will then continue to fire at a higher rate for 20 s 
or more after the stimulus disappears. For example, the neuron shown in Fig. 6.3 
increased its firing rate following presentation of a red stimulus and maintained its 
increased firing rate for 16 s after the stimulus vanished, when the monkey made a correct 
choice and was rewarded. This particular neuron was selective for the red stimulus, as it 
never responded to the green one. 

Let us examine a very simple neural network with responses like those of prefrontal 
neurons during this delayed response task. The system consists of just two neurons which 
are mutually excitatory and whose spike rates are described by the Naka-Rushton 
function in (2.11) and Fig. 2.3 with a maximum spike rate of 100/s and N = 2. Assuming 
that the neurons have identical properties and connection strengths for simplicity, they 
will be described by the equations: 

dF, 1 / 100(3F 
-Ei + d? T\ 1202 + (3F2)2

; 

(6.: 
dF2 1 [ 100(3F,) 

-E2 + -d? T \ ' 1202 + (3F, 

This problem can be tackled in the same fashion as the previous one: first plot the isoclines 
and find the equilibrium points, then use Theorem 8 to determine the stability char
acteristics of the equilibria. 

The state space and isoclines of (6.8) are plotted in Fig. 6.4. The isoclines intersect at 
three points rather than just one, so this system must have three steady states. Solving the 
isocline equations for steady states will generally require numerical approximations 
using MatLab. However, in this case the symmetry of the problem simplifies things 
considerably. From the symmetry of (6.8), it can be inferred that E\ = F2 at equilibrium, 
so the steady states will obey the simplified equation: 

100(3F,)2 

1202 + (3F,)2 
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Fig. 6.3 Responses of a neuron in monkey inferiortemporal cortex during a short-term memory task 
(reproduced with permission, Fuster, 1995). Following a 1.0 s presentation of a red sample, this neuron fires 
at more than twice its resting level for 16 s until the signal to make a match appears and the monkey makes a 
choice to receive a reward. The same neuron did not increase its response when the sample was green. 
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Fig. 6.4 Isoclines of (6.8) intersect at three points, thus producing steady states at (0. 0), (20. 20) and (80, 80). 

so 

9E 900F2+ 120-F, = 0 (6.9) 

Although this is a cubic equation, one can see that E\ = 0 is one solution, so the origin 
must be one equilibrium point. The other two are found by solving the quadratic equation 
that results after factoring E| out of (6.9), which produces the result: 

900 ± J (900)" -36(120)-
= 50 ± 30 

So the remaining two equilibria are at (20, 20) and (80, 80) as shown in Fig. 6.4. 
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The next task is to apply Theorem 8 to each of the three steady states of (6.8) in turn. To 
do this we shall need to know the derivative of the Naka-Rushton function S(x) from 
(2.11), where N = 2. From basic calculus: 

so 

S(x) 

dS 

M(ax)2 

o2 + (ax) 

2Mo1a1x 

(6.10) 

dx (a2 + (ax)2)2 

Letting r = 20 ms, the Jacobian matrix for (6.8) will therefore have the following form: 

/ 

1 

20 

1 
~20 

200(120)29F, 

_1_ 
20 

200(120)'9F2 

(120)-+(3£i 

(120)2+(3F2) 

1 

~20 

\ 

(6.11) 

/ 

The Jacobian must be evaluated at each equilibrium point, after which Linear Order2.m 
can be used to obtain the eigenvalues. This produces the following matrices and stability 
characteristics at the three singular points: 

A = 

A = 

A = 

-0.05 0 
0 -0.05 

-0.05 0.08 

0.08 -0.05 

-0.05 0.02 

0.02 -0.05 

, A = —0.05, -0 .05 Asymptotically stable node. 

,A =+0.03, -0.13 Unstable saddle point. (6.12) 

, A = —0.07, —0.03 Asymptotically stable node. 

Therefore, all trajectories must diverge from (20,20) and trajectories near either (0,0) or 
(80, 80) will approach these steady states asymptotically. Try running MatLab script 
STMemory.m with a range of different initial conditions to convince yourself that tra
jectories will indeed converge to either (0,0) or (80,80). 

6.5 Hysteresis, bifurcation, and memory 

This short-term memory network exhibits an important nonlinear phenomenon known 
as hysteresis. The term hysteresis is derived from a Greek term meaning 'to lag behind'. In 
the present context, this means that the present state of our neural network is determined 
not just by the present state of stimulation but also by the history of stimulation. Hys
teresis is most easily exhibited if (6.8) is modified to include an external stimulus K, 
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assumed to be the same for each of the two neurons. Now (6.9), which defines the steady 
states, becomes: 

F, 
100(3F, +K)'+ 

I202 + (3F, +A')2 
(6.13) 

where the subscripted plus sign indicates that the expressions in parentheses evaluate to 
zero for negative arguments. The steady state values of E i now depend on K, and MatLab 
has been used to solve (6.13) with the results plotted in Fig. 6.5. There is a range of lvalues 
between A and B for which three steady states exist. Two are asymptotically stable (solid 
lines), and they are separated by an unstable saddle point (dashed line), as was found in 
(6.12) and Fig. 6.4. If we begin stimulating the network with K< A and increase K, the 
network will remain in the lower or resting steady state throughout the AB range. If, 
however, we begin stimulation with K> B and decrease K, the network will stay in the 
upper asymptotically stable state as K traverses the region AB. Thus, over the stimulus 
range A < K < B, the equilibrium state that the system is in depends on the previous history 
of stimulation. Furthermore, if Kis varied slowly back and forth across the range shown in 
the diagram, the neural response will trace out the loop shown by the arrows in the figure. 
This is known as a hysteresis loop. 

Let us consider in more detail the reasons that this memory network exhibits hysteresis. 
When K=A. the unstable saddle point coalesces with the upper asymptotically stable 
equilibrium, and the two vanish when K< A. Similarly, when K= B, the lower asymp
totically stable state and the saddle point state coalesce, and both vanish when K>B. 
This appearance or disappearance of a pair of equilibria is known as a bifurcation, 
which literally means a splitting in two. At a bifurcation point two equilibrium points (or 
one equilibrium and one nonlinear oscillation, see Chapter 8) are either created together, 
or else they merge and vanish together. The mathematical reason that a bifurcation 
always involves the creation or disappearance of a pair of steady states is that two roots of 
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Fig. 6.5 Hysteresis loop and bifurcations generated by (6.8) in the presence of stimulus AT in (6.13). Between A 
and B two steady states are asymptotically stable nodes, while the intervening one is an unstable saddle point. If K 
is swept back and forth across range AB, the system will trace out the hysteresis loop shown by the arrows. 
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(6.13) become complex valued at the bifurcation point and therefore no longer exist on the 
real plane. Although bifurcations involving two equilibrium points always occur in an 
asymptotically stable-unstable pair, we shall see in Chapter 8 that there are bifurcations 
of oscillatory solutions from steady states as well. 

Hysteresis is the mathematical basis of the short-term memory capacity of this two-
neuron network. The system will remain in the lower asymptotically stable equilibrium 
where neither neuron is firing until there is a stimulus K> B, after which the neural 
response will rapidly jump to the upper asymptotically stable state as depicted by the 
vertical arrow at B in Fig. 6.5. This constitutes triggering of the network's short-term 
memory. If the stimulus is now turned off, so K = 0, the neurons will remain in the upper 
asymptotically stable state and thus continue to fire, because the upper state exists and is 
asymptotically stable for K = 0. Thus, the network 'remembers' via hysteresis that a 
relevant stimulus has occurred. To shut the network off, there must be a negative or 
inhibitory stimulus (K < A < 0) to erase the short-term memory activity once triggered. 
This is hysteresis in short-term memory. 

6.6 Adaptation, forgetting, and catastrophe theory 

The short-term memory network in (6.8) has a physiological shortcoming: after the 
network has been triggered to its active state, both E neurons will continue to fire at a rate 
of 80 spikes/s until the response is actively inhibited. In the absence of such inhibition, 
activity will continue forever. So, the network does not incorporate the physiological fact 
that neurons (like muscles) slowly adapt or fatigue when they continue to fire at high rates 
for long periods of time. As will be seen in a moment, the consequence for the animal is 
forgetting. Let us extend our analysis of short-term memory by incorporating neural 
adaptation into the network. 

The ionic mechanisms underlying neural adaptation will be explored in Chapter 10, but 
the reduction of spike rates caused by adaptation can be easily incorporated here. Studies 
of both single neurons in visual cortex (Bonds, 1991) and the perceptual consequences of 
visual pattern adaptation (Wilson and Humanski, 1993) indicate that adaptation causes a 
slow increase in the constant a of the Naka-Rushton function (2.11). This in turn reduces 
the firing rate of the neurons. So, in addition to the two neural activity equations in (6.8), 
adaptation requires the introduction of two variables, A \ and A2. The resulting system of 
four equations is: 

dEy = [(_E | 100(3F2); 
d? T[ ' (\20 + A{)

2 + (3E2)
2
+ 

dE2 1 / r 100(3F,); 
-E2 + • 

d? ry - (120 + /t2)- + (3F,);y (6.14) 

< ^ = i ( - ^ l + 0 . 7 F 1 ) 
d? Ta

v 

- ^ = I(-^ 2 +0.7F 2) 
d? ra 
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Assume again that r = 20ms, but because neural adaptation is a very slow process, a 
reasonable value for the adaptation time constant is ra = 4000 ms, i.e. 4.0 s! The firing rate 
in (6.14) will continuously decrease as A, and A2 increase. Ai and A2, in turn, will increase 
when E\ > 0 or F2 > 0 respectively, reaching the equilibrium values: 

Ai=0JEi and A2=0.7E2 (6.15) 

Let us set E\ = E2 due to the symmetry of the network and solve for the equilibrium 
states of (6.14), which obey the equation: 

120 + 0.7F,)2+9F2) =900F, (6.16) 

F| = 0 is clearly one solution of (6.16), so the resting state (0,0,0,0) is one equilibrium 
point of (6.14). After factoring out E\ in (6.16) and solving the resulting quadratic 
equation, both roots turn out to be complex. This means that there is only one equilibrium 
point for (6.14), and this is at the origin. Does this mean that the system no longer has 
interesting behavior and cannot function as a short-term memory network? The answer is 
no, and the key to understanding this lies in the fact that the adaptation variables have a 
time constant that is 200 times larger than the neural time constants, so At and A2 will 
increase very slowly. They change so slowly, in fact, that we can analyze the system using 
the approximation that E\ and F2 come to equilibrium very rapidly relative to any change 
in A i and A2 so that E\ and F2 are essentially always at the equilibrium determined by the 
current values of A\ and A2. Thus, we can understand the behavior of this system by 
analyzing the isoclines and equilibrium points of just the first two equations in (6.14) 
while treating A i and A2 as parameters. This general approach, in which system behavior 
on a fast time-scale is treated as being in equilibrium relative to behavior on a very slow 
time-scale, is a widespread and very important method in nonlinear analysis. 

Let us set A] = A2 due to symmetry and consider how the isoclines in Fig. 6.4, which 
describe system (6.14) when A\ = 0, vary as A\ increases. The isocline equations are now: 

100(3F2)
2 

En 

(120 + A\Y + (3F2) 
(6.17) 

100(3FI)
2 

(120 + /f,)2 + (3F l)
2 

Figure 6.6 shows the isoclines and equilibrium points for A\ = 24 and A\ =36. For 
A\ =24, the system still has three steady states, and stability analysis shows that both the 
origin and (64,64) are asymptotically stable nodes, while (36,36) is an unstable saddle 
point. Compared to Fig. 6.4, however, the firing rate in the asymptotically stable state has 
decreased, and the saddle point has moved closer. When A i increases to 36, one node and 
the saddle point have coalesced and vanished leaving only the origin as an asymptotically 
stable steady state. The node and saddle point coalesce when A\ = 30. (The isocline 
equations still have three solutions, but two have become complex conjugates and thus 
have moved off the phase plane.) To get a feel for this change, run the MatLab script 
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Fig. 6.6 Isoclines (6.17) for system (6.14) plotted for two values of A\. On the left there are three steady 
states, but only the steady state at the origin remains on the right. 

IsoclineMovie.m, which produces an animation showing the gradual change of the iso
clines in (6.17) as Ai increases from 0 to 40. 

Thus, the adaptation variables Ai and A2 slowly move the equilibrium point corre
sponding to short-term memory activity toward the saddle point until they meet and 
vanish from the phase plane. To corroborate this analysis, let us simulate (6.14) using the 
script STMadapt.m. In this simulation, a stimulus K= 50 is presented for 200 ms and is 
then turned off. As illustrated in Fig. 6.7, however, the ensuing neural activity outlasts the 
stimulus for about 5000 ms until adaptation results in loss of stimulus memory, at which 
point neural activity rapidly ceases. A larger adaptation time constant ra in (6.14) would 
increase the duration of short-term memory but would also increase the simulation time. 
Thus, neural adaptation can lead to forgetting in short-term memory tasks, and indeed 
monkeys do forget and make mistakes in delayed response tasks when the delay lasts too 
many seconds. Correlated with this behavioral change, firing rates of prefrontal neurons 
drop back to baseline levels (Fuster, 1995). 

This short-term memory network with adaptation is a very important example of the 
insights that can be gained by using arguments from symmetry and taking advantage of 
widely different time constants. Doubtless, no two neurons ever have exactly the same 
characteristics, but just as obviously, there is only enough genetic information to specify 
classes of neurons, so it is reasonable to assume that different members of the same class 
will be very similar. By letting Fi = F2 and Ai = A2, analysis of (6.14) was reduced from 
four to two dimensions. 

In (6.14) there is an extreme difference in time scales, because fluctuations in neural 
spike rates are much more rapid than neural adaptation. When there is an extreme dif
ference in time scales, the rapidly changing variables are almost always very near equi
librium, but the positions of the equilibria change very slowly. In this example, the spike 
rates Fi and E2 vary rapidly and hence arrive at an equilibrium point determined by the 



84 Spikes, decisions, and actions 

100 

CO 

or 

Q. 

2000 4000 6000 

Time (ms) 

8000 

Fig. 6.7 Response of (6.14) to a brief. 200ms stimulus coinciding with the narrow peak on the upper left. 
Recurrent excitation maintains activity of both E(t) cells at a high level, but activity slowly decays as neural 
adaptation A{t) builds up. After 5000 ms a sudden loss of neural activity occurs at a bifurcation. 

current value of the adaptation variables A\ and A2. These adaptation variables change 
200 times more slowly than the spike rates, so they can be viewed as parameters that 
slowly change the structure of the equilibrium points of the system. As illustrated in Fig. 
6.7, the response of the system follows the slowly changing equilibrium points for more 
than 5000ms. Then a catastrophe occurs: one asymptotically stable equilibrium joins with 
the unstable saddle point and vanishes, so the neural response rapidly drops to zero. 
Reference to Fig. 6.5 shows that the adaptation variable functions like a slowly varying 
input driving the system, once excited, back through the bifurcation point at A. 

The mathematical notion of a catastrophe or bifurcation also underlies the geology of 
plate tectonics and earthquakes. As pressure builds up on tectonic plates, they compress 
only slightly for a long time, so the distance between points on opposite sides of a fault line 
changes little. At some point, however, the pressure becomes great enough to overcome 
frictional forces, and the plates rapidly slip to a new equilibrium position, thus producing 
an earthquake, which can be a true catastrophe in the vernacular sense! The mathematical 
concepts analogous to those in this neural short-term memory example underlie geo
physical catastrophes as well. 

6.7 Competition and neural decisions 

So far we have analyzed two nonlinear neural networks: one for divisive gain control and 
one for short-term memory. The former involved a negative feedback loop, while the 
latter incorporated mutual excitation. A further possible interaction between two neu
rons is mutual inhibition, which will be examined here. As we shall see, the state space of 
two mutually inhibitory neurons is similar to that of the memory network in having two 
asymptotically stable steady states separated by an unstable saddle point. However, each 
steady state in this case is defined by activity in one neuron and complete inhibition of the 
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other, so this network makes one of two mutually exclusive decisions based on the relative 
strengths of inputs to the two neurons. 

Consider the following equations: 

dF, 1 
-i± = -{-El+S{Ki-3E2)) 
dt T 

(6.18) 
dF2 

~dTZ 

S(x) --

= -(-E2 + S(K2 
T 

( lOO(x)2 

= \ 1202 + (x)2 

u 

- 3 F , ) ) 

x > 0 

x < 0 

K\ and K2 here are the stimuli to the two neurons in the network, and S(x) is again the 
Naka-Rushton function from (2.11). Assume r = 20 ms. Each neuron inhibits the other 
subtractively with a synaptic strength of —3. Explore the responses of this network by 
running WTA2.m using various combinations of excitatory inputs K\ and K2. Above a 
minimum level of excitation (about 50) and assuming initial conditions with all variables 
zero, the system always switches to an equilibrium point at which the more strongly 
stimulated neuron is active and the other neuron has been shut off by inhibition. This is 
the simplest example of a winner-take-all (WTA) network. This name has been used to 
describe such networks, because the neuron receiving the strongest stimulus will win the 
inhibitory competition with the other neurons and in turn suppress all of its competitors. 

Let us analyze (6.18) in the case K\ and K2 = 120. Due to the competitive inhibition, one 
steady state is E\ = S(K) = 50, and F2 = S(K - 3 x 50) = S(-30) = 0. Similarly, the 
reader can easily verify that E\ = 0, and F2 = 50 is also an equilibrium point. If you run 
WTA2.m, you will see that the isoclines intersect at a third equilibrium point in addition to 
the two above. From symmetry considerations you might expect this to occur where 
E\ = F2, and this is correct. If one sets F| = F2 in either of the isocline equations in (6.18), 
the MatLab roots function gives the solution E\ = E2 = 20. 

As in previous examples, the stability of each steady state must next be determined. As 
(50,0) and (0, 50) will be the same, let us just examine the Jacobian matrix at the former 
state: 

/ -
(6.19) 

0 

The eigenvalues here are obviously both identical: X = - 1/r, so (50,0) and (0, 50) are 
both asymptotically stable nodes that are critically damped. At (20,20) we can use (6.10) 
to evaluate the Jacobian, with the result: 

T 5r 
8 1 

~57 ~T / 

(6.20) 
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Setting T = 20 ms and using Linearorder2.m, the eigenvalues are: A = —0.13 and A = 
+0.03, so (20, 20) is an unstable saddle point. Thus, trajectories will leave the vicinity of the 
saddle point at (20,20) and approach the nearer of the two asymptotically stable nodes. It is 
worth noting, however, that this decision network also exhibits hysteresis: once one neuron 
has suppressed the other, there must be a large increase in the stimulus to the second neuron 
before it can become active. Thus, there is resistance to change in this network once a 
decision has been made, which is also a characteristic of much human cognition! 

We have now completed an analysis of several systems composed of two interacting 
neurons. Such systems can have multiple equilibrium points, which permit them to per
form short-term memory tasks and to make decisions. Although two neuron systems are 
far too small to provide plausible explanations for complex mental phenomena, the next 
chapter will show that the principles learned above generalize to much larger and more 
interesting neural networks. 

6.8 Exercises 

1. Analyze the following divisive gain control circuit consisting of a bipolar cell B and an 
amacrine cell A. Let rA = 20 ms and rB = 50 ms. (a) Obtain the general formula for the 
equilibrium point in the first quadrant as a function of the light level L. (b) For L= 100 
and for E = 10 000 determine the stability, being sure to indicate the Jacobian. (c) Simulate 
these equations for 800 ms using RungeKutta4.m and plot B(t) and Alt) for each of the two 
L values above. As initial conditions let A = 0 and Z? = 0. 

dB 1 / L 
= — [-B + dt TB\ 1 + 4.4 

dA 1 
— = —(-A+B) 
dt rA 

2. The divisive gain control network below is more complex, because A depends on B2. 
Analyze this network and its response when L = 10 000, TA = 15 ms and rB = 30ms. 
(You will have to use the MatLab roots function to solve for the steady states.) After 
analyzing the stability of any physiologically relevant steady states, simulate 500 ms of the 
response for .4(0) = 0, B(0) = 0. Graph your results. 

dB 
B dt TB\ 1 + 5.4 

dA 1 , 
— = — (-A + B2) 
dt rA

 v 

3. Consider the following two-neuron network for short-term memory: 

dF, I / „ 100F2, 
E\ + • dt T\ 302 + E2 

dF. 1 ( „ IOOFT 
E2 + 

d? T V " 302 + E] 
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Assuming r = 25 ms, solve for all equilibrium points (simplify your task using symmetry), 
and determine the stability of each. Simulate the response of the network for each of the 
following initial conditions: (a) E\ = 4, E2 = 7; (b) E\ = 8, F2 = 20. 
4. Suppose that the short-term memory network in eqn (6.8) involves excitatory con
nections between two neurons in different brain structures such as the frontal cortex and a 
subcortical nucleus. In this case, one would expect some delay in the transmission of 
excitation between the neurons. Modify the equations to include delay equations with 
time constants 6 in the two excitatory paths using the approach developed in Chapter 4. Is 
there a critical delay 6C at which the equilibrium point at (80,80) becomes unstable? 
Simulate the system with 6 = 10 ms and plot the time course of the responses. Assume that 
the stimulus has intensity 200 and lasts for 250 ms, and run your simulation for a total 
of 2000ms. Compare your results with the data in Fig. 6.3. 

5. The following network is a three-neuron generalization of the WTA network in (6.18): 

H F 1 
-^- = ^(-El+S(Ki-5E2~5E,)) 

c\F 1 
-rf = ^(-E2 + S(K2-5E]-5E,)) 
dt 10 

dF 
di - ( - F 3 + S(K,-5F, -5F2)) 

A > 0 

Assuming that K\ = K2 = K3 = 80, find and analyze the stability of all steady states. 
Simulate the network for the values of K above and the following initial conditions: 
(a) Ei = 2, E2 = 1, F3 = 0; and (b) F, = 1, F2 = /, E3 = 2. What is the final state of the 
system in each case? 



Computation by excitatory and 
inhibitory networks 

With the techniques developed in the previous chapter it is now possible to analyze many 
rather complex networks with multiple steady states. Accordingly, let us examine larger 
neural networks that use differing balances of excitation and inhibition to perform a 
variety of sophisticated computations of functional significance. Several of these 
embellish the basic 'winner-take-alf (WTA) network, which was developed in the last 
chapter. First, we shall examine a WTA network that chooses the largest stimulus among 
a wide number of alternatives. Such networks make neural decisions based on the 
strength of the sensory evidence. Next, a WTA network with appropriate combinations of 
inputs will be shown to perform vector summation for any number of input vectors. 
Vector summation is important in motor control, somatosensory perception, and motion 
perception. An embellishment of this vector summation network will also predict whether 
motion will be seen as transparent or rigid, an example of perceptual categorization. 
Finally, we shall analyze the Wilson-Cowan (1973) equations for excitatory and inhi
bitory interactions in the neocortex. These equations give rise to a variety of dynamical 
phenomena for different ranges of parameter values and form the basis for an explanation 
of visual hallucinations (Ermentrout and Cowan. 1979). 

7.1 Winner-take-all networks 

Neural networks in which each neuron inhibits all other neurons except itself are known 
as winner-take-all networks. As noted in the previous chapter, mutual inhibition is a form 
of competition, and the neuron with the largest external input generally wins this com
petition by suppressing the other neurons below their thresholds. If the external input to 
each neuron is regarded as data supporting the response which that neuron would signal, 
then winner-take-all (WTA) networks make decisions based upon the preponderance of 
supporting evidence. 

Let us consider an important experimental paradigm known as visual search. Visual 
search is a task that we are all confronted with frequently: pick out the face of a friend in a 
crowd, or find the utensil you need in a cluttered drawer. In the laboratory visual search is 
studied by requiring subjects to find a unique item in a collection of distracting items. 
Experiments typically measure the reaction time (time required to locate the unique item) 
as a function of the number of distractors. Two typical displays, each containing a unique 
target item and eight distractors are depicted in Fig. 7.1. When you look at the figure, the 
target item is so obvious in the top panel that it seems to pop-out of the background of 
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Fig. 7.1 Typical stimuli for a visual search experiment. The unique element in A 'pops-out' of the field of 
distractors, and reaction times are accordingly fast. The unique element in B is much harder to detect, and 
reaction times are much longer. 

distractors. In the bottom panel, however, the task is considerably more difficult, and this 
is reflected in the longer reaction time required to locate the unique item. Treisman (1982) 
discovered that when the distractors are very different from the target item, the reaction 
time to detect the target is short and almost independent of the number of distractors, as is 
illustrated by the curve with open circles in Fig. 7.2. When the distractors are very similar 
to the target, however, reaction times are much slower and increase dramatically with the 
number of distractors. This is shown by the solid symbols in Fig. 7.2. As reaction times in 
this case increase by a similar number of milliseconds per distractor, many have inferred 
that this data pattern reflects serial processing in the brain. When a target pops out of the 
distractors so that reaction time is independent of the number of distractors, it has been 
argued conversely that the brain is employing a parallel processing strategy (Treisman, 
1982; Treisman and Gelade, 1980; Bergen and Julesz, 1983). 

A winner-take-all network may be used to provide a novel interpretation of these visual 
search data. Using the Naka-Rushton function (2.11) to describe spike rates, the network 
equations are: 

dF 
'77 : 

cLD 
' dt' 

-T + 

-D + 

\00(ET - kND)~+ 

72 + (FT - kND)\ 

l00(ED-k(N~ \)D-kT)] 
(7.1) 

a2 + (ED-k(N-\)D-kT)-+ 
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Fig. 7.2 Latencies of (7.1) as a function of the number of activated distractor neurons (£>). Latency is the 
time for the target (7") neuron to reach 95% of its maximum rate while suppressing D responses. 

where Fis the response of whichever neuron receives information about the target and D 
is the response of each of the Adistractor neurons. The constant k determines the strength 
of the inhibitory feedback, while the ( )+ indicates that the parenthetical expression 
evaluates to zero for negative arguments. Two points about (7.1) are worthy of note. 
First, Fand D are distinguished only by the level of their inputs, with F j > FD. Second, 
we have reduced an (N + l)-dimensional system (target plus N distractors) to a two-
dimensional network by making use of symmetry concepts. On the assumption that initial 
conditions and inputs FD to all distractors are identical, (7.1) accurately describes the 
dynamics of the entire (N + l)-dimensional system. This use of symmetry to reduce the 
dimensionality of a system will be termed symmetry subsampling and will be encountered 
again in Chapters 8 and 13. Note also that if some of the distractor inputs are zero, we 
may simply reduce N accordingly, as these neurons will have absolutely no influence on 
the resultant system dynamics. 

A WTA network with five neurons, time constant r = 20 ms, and an inhibitory con
stant k = 3, is implemented in the MatLab program WTASNeurons.m. The script has 
four distractors with neural inputs FD = 79.8 and one target with Ej = 80. Running the 
script will reveal that the target neuron wins the competition with distractors and sup
presses the distractor activity below threshold after a latency of about 880 ms. If two of the 
distractor inputs in the script are now reduced to zero so that there are only two remaining 
distractors in the WTA competition, the target neuron again wins but with a much shorter 
latency of 380 ms. Varying which neuron receives the stronger or target input will show 
that the winning neuron is always the one responding to the target. 

As shown in Fig. 7.2, this WTA neural network makes decisions by choosing the 
maximum input and suppressing the others, but the dynamics cause the response latency 
(time to 95% of peak response) to increase with the number of distractors. Furthermore, 
the latency decreases as the distractor input FD becomes less similar to the target input EQ 
(run the network with FD = 78 for example). These results, plotted in Fig. 7.2, show that a 
WTA network will produce response latencies similar to those of humans (humans 
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require some time for the motor response) in visual search tasks such as depicted in 
Fig. 7.1. As the network incorporates N + 1 neurons competing in parallel, the visual 
search data may be explained by a purely parallel process with inhibitory interactions, 
rather than by a postulated shift from parallel to serial processing as the task becomes 
more difficult. In support of this, Verghese and Nakayama (1994) have obtained data that 
argue against separate parallel and serial processes in visual search. 

What is the dynamical basis for variable latencies in the WTA network (7.1)? The 
analysis of two inhibitory neurons in the previous chapter suggests that (7.1) will possess 
a saddle point separating various asymptotically stable steady states, with only one 
winning neuron active in each. When the input to the target neuron, FT is only infmite-
simally greater than that to distractor neurons, we can solve approximately for the 
equilibrium state by setting T = Dm (7.1). Taking FT = 80, o = 120, and k = 3, the first 
equation in (7.1) reduces to the following expression for a steady state in which all 
responses are equal: 

100(80 -3NT)2, 
0 (7.2) 1202 + (80-3A'F) ; 

This can be solved for N = 1,2,4, etc. using the fzero function in MatLab with the 
results: T= 11.9 for N = 1; T = 7.6 for N = 2; and T = 4.5 for N = 8. Indeed, reflection 
on the form of (7.2) indicates that the value of T at equilibrium must decrease as N 
increases in order for the input to just balance the recurrent inhibition. 

Linearization of (7.1) around any of the steady states where T « D gives: 

dt\DJ T\S'Nk -l-(N-l)S'kJ\Dj { ' 

where S' is the derivative of the Naka-Rushton function evaluated at the steady state. The 
eigenvalues of (7.3) are A = S'k - 1 and A = -NS'k - 1. As N, S', and k are all > 0, the 
equilibrium will be a saddle point so long as S'k > 1. The equilibrium state of (7.1) in 
which the T neuron fires at rate Feq and all D neurons are suppressed will be asymp
totically stable so long as kTeq > FD , a condition guaranteeing that all distractor 
responses will drop to zero. Thus, the WTA network will implement neural decisions as 
long as the inhibitory strength k is sufficiently large and the inputs are strong enough so 
that S' is large enough to produce a saddle point. 

Given conditions producing a saddle point in the state space, it is now possible to see 
why WTA network latency increases with the number of distractors A as shown in Fig. 7.2 
and in visual search data. Recall that the eigenvalues of (7.3) are A = S'k - 1 and 
A = -NS'k - 1 at the saddle point. In addition, solution of (7.2) showed that the values of 
Tand D at the saddle point decrease as Aincreases. This in turn causes 5" to decrease once 
values of Fand D at the saddle point fall below the point of maximum slope of the Naka-
Rushton function (0.58cr in this case). Accordingly, the positive exponent in the vicinity of 
the saddle point will decrease as N increases, and this will cause trajectories to diverge 
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from the saddle point more slowly. Thus, increasing latencies in WTA networks result 
from a saddle point that occurs closer to the origin and therefore has a reduced positive 
exponent as the number of distractors N increases. 

One final point about WTA networks: there are generally A additional equilibria that 
are asymptotically stable: ones in which one D neuron is active and all other activity is 
suppressed. (This assumes distractor input is not much weaker than target input.) If the 
WTA network is initially in the resting state where T= D = 0, however, the only state that 
can be reached under conditions producing a saddle point is the state in which the most 
strongly stimulated neuron is active and all others are inhibited. Once a winner has 
suppressed other activity, however, the network exhibits hysteresis, and emergence of a 
new winner requires a greater than normal input. 

These properties of decisions implemented by WTA networks reflect properties of 
higher level cognitive decisions. It is common experience that decisions are more difficult 
and take longer when the number of appealing alternatives increases. Once a decision is 
definitively made, however, humans invariably exhibit more or less resistance to a change 
of mind and generally require more evidence to do so: we all exhibit hysteresis in our 
cognitive processes! 

7.2 Vector summation 

Although we rarely engage in vector summation consciously unless forced to do so in a 
math course, vertebrate brains are confronted with vector summation problems all the 
time. For example, it is crucial for your somatosensory system to have information about 
the location of your hands and feet at all times, yet the information sent to the brain from 
receptors in the muscles and joints effectively indicates only the angles of the joints 
(Rothwell, 1994). The only way in which the position of your hand or foot can be 
determined is for the brain to combine joint angle and bone length information by vector 
summation. If your goal is to reach out and grasp a wine glass in front of you, then your 
brain must also include visual direction and distance in the vector computation. 

The phenomenon known as path integration represents a second striking example of 
vector summation in the mammalian brain. Figure 7.3 illustrates the basic phenomenon 
using information extracted from photographs in a review article by Whishaw et al. 
(1997). A rat emerges from its cage, which has been placed randomly below one of eight 
holes in a circular platform, and begins searching for a food pellet. The search takes a 
circuitous path until the food is located, at which point the rat returns directly to its cage 
before eating. As rats will return directly to their cage even when blindfolded, the return 
direction to the cage cannot be visually cued. Rather, the rat apparently encodes the 
direction and distance of its motion along each segment of its search path and then 
performs a vector computation to determine the location of its cage relative to its position 
at the end of the search. Evidence from a variety of sources suggests that information 
about the length and direction of each path component is stored in the hippocampus 
(McNaughton et ai, 1996; Whishaw et ai, 1997). 

Motor control and motion perception are other areas where vector summation is 
important. In motor control, Georgopoulos and colleagues (1986, 1993) have shown that 
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Fig. 7.3 Example of path integration by a rat searching for a food pellet. Despite a circuitous search path 
from the nest, hidden below one of eight holes in a platform, the rat returns directly to the nest with the 
located pellet. Path integration occurs even when the rat is blindfolded. 

the direction of arm movements by monkeys is encoded by the vector sum of neural 
responses in motor cortex. Furthermore, individual motor neurons each fire maximally 
for a particular direction of arm movement fi, and their responses fall off as cos(fi—9), 
where 6 is the direction of actual movement. 

In motion perception, neurons in primary visual cortex only respond to the direction of 
motion perpendicular to local lines and edges, and this information must be combined to 
determine the direction of object motion. Furthermore, there are circumstances in which 
local motion information cannot be integrated into a rigid motion percept, and 
transparent or sliding motion is seen (Kim and Wilson, 1993). The MatLab script 
Motion_Demo.m presents several motion stimuli so that these effects may be experienced. 
As shown in Fig. 7.4, the program produces a set of 12 circular apertures through which 
moving light and dark bars (cosine gratings) may be seen. If the program is run with 
directions of ±22°, half of the apertures display bars moving at an angle of+22° and half 
at an angle of —22° relative to vertically upward. In response to this stimulus in the 
laboratory, subjects perceive a rigid sheet of bars moving vertically upwards, which is the 
vector sum direction. Re-running the program with directions of ±68° yields a very 
different percept: two sets of bars are seen sliding across one another. This transition from 
rigid to transparent motion reliably occurs for all subjects when the motion directions are 
approximately ±45° (Kim and Wilson, 1993). 

Let us examine a modified WTA network that can both compute the vector sum of 
input motion directions and simultaneously decide whether the motion is rigid or 
transparent. This network represents a simplified version of a detailed neural model for 
motion perception based on the physiology of a higher cortical motion area (Wilson et ai, 
1992; Wilson and Kim, 1994). The model, with appropriate modifications, may be applied 
to motor control, path integration, and somatosensory computations. As shown in 
Fig. 7.5, 24 neurons tuned to directions of motion varying in 15° increments comprise the 
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Transparent Motion 

Fig. 7.4 Examples of the two motion displays produced by MotionDemo.m In the left-hand pattern, the 
motions are integrated into a percept of rigid upward motion, while in the right pattern motion transparency 

network. Each unit in the network has a different preferred direction fi and receives an 
excitatory input Fc( which is a cosine-weighted sum of A input vectors: 

EQ = \ j L # c o s ( f i (7.4) 
6=1 

where Lg is the length of the vector and 8 is its direction. In neural terms', Lg represents the 
firing rate of an input neuron optimally sensitive to motion in direction 8, and the cosine 
represents the synaptic weighting function. As mentioned above, cosine weighting is 
common in primate motor neurons (Georgopoulos et al., 1986. 1993), and it is even found 
in the cricket (Theunissen and Miller, 1991) and leech (Lewis and Kristan, 1998) nervous 
systems. Thus, one may conjecture that cosine weighting is an early evolutionary adap
tation to the ubiquitous requirement for animals to perform vector computations on their 
sensory inputs. 

In addition to receiving a cosine-weighted input given by (7.4), the network neurons 
engage in a winner-take-all competition via recurrent inhibition. This, however, is a 
modified WTA scenario in two respects. As shown in Fig. 7.5. each neuron vigorously 
inhibits the range of neurons enclosed by gray regions, but it neither inhibits its two 
nearest neighbors, N±\ and Ni2, nor neurons signaling roughly diametrically opposite 
directions of motion. (All inhibitory interactions are symmetrical; for clarity only the 
inhibitory connections of one unit are depicted.) This network is therefore a WTA net
work with a restricted range of competition. As you might conjecture from the con
nectivity pattern, there are two consequences of this restricted competition. First, near 
neighbors of the winner will survive the competition. Second, there can be two winners if 
they receive almost diametrically opposed inputs. We shall see in a moment that this is 
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Fig. 7.5 Vector summation network for motion perception. Each of the 24 neurons signals a different 
direction of motion in 15° increments. Each unit also strongly inhibits all other units tuned to the relative 
directions depicted in the gray regions, excluding its two nearest neighbors N±\ and N±2 along with units 
close to the opposite direction of motion. Each unit has the same relative set of inhibitory connections 
centered on its preferred direction, but only one set is shown for clarity. 

correct. The equations describing the network are: 

n+9oc n.±i20c 

T^=-Rn+[ Y. Eecos(n-8)-k J J Ra 
7=fi-90° a=fi±45° 

(7.5) 

where RQ is the response of the neuron with preferred direction fi in 15° increments. The 
brackets with the + subscript indicate that this expression is identically zero when the 
argument within the brackets is less than zero. This is an extremely simple nonlinearity 
with a threshold at zero and a linear response above threshold. However, this is sufficient 
for the network to perform vector computations. The strength of the inhibitory feedback 
k is not critical as long as it is sufficiently strong to suppress other neural activity. 

The network in eqn (7.5) is implemented in MatLab script VectorWTA.m, where k = 3. 
If you run the simulation with vector lengths of 20 and angles of ±40°, you will see that 
the network indicates a perceived direction of 0°, which is the experimental observation 
depicted in Fig. 7.4. The response of the network in this case is a set of three neighboring 
active neurons signaling directions -15°, 0°, and 15° as shown in Fig. 7.6 (left), while all 
other neurons have been suppressed by the WTA inhibition. This triad of neighboring 
winners in the network results from the absence of recurrent inhibition onto the two 
neighbors N± | and A±2 on either side of each unit. Activity in N\ will inhibit the A_2 unit, 
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Fig. 7.6 Responses of (7.5) to ±40° vectors (left) and ± 75° vectors (right) plotted in polar coordinates. The 
set of three responding neurons on the left signals rigid rightward motion, while the two sets of three active 
units on the right signal transparent motion. 

and A_ i will inhibit N2; so only three units will survive the inhibitory competition. By thus 
preserving the activity of the winning unit's nearest neighbors in the steady state, the 
network provides a sparse population code for vector direction that is much more 
accurate than the 15° interval between preferred directions might lead one to suspect. A 
sparse population code is a neural code in which activity of a small number of neurons 
represents a response much more accurately than any single neuron would be capable of 
by itself. In essence, a population code permits interpolation of intermediate responses 
between the optimal values for individual units. To see that the network in (7.5) will 
accurately encode intermediate values of direction, rerun the program with a variety of 
vector lengths and angles within a ±45° range. For example, input vectors of length 20 at 
—40° and length 8 at +30" yield a predicted direction of -22.4 as compared to a true 
vector sum direction of -21.7°. This error of 0.7° is as large as the network will produce, 
so the use of a three-unit sparse population code results in an improvement in accuracy by 
more than a factor of 10 ( ±7.5° versus ±0.7'"'). (Conversion of the three neural responses 
to a single number is accomplished by parabolic interpolation, see Wilson et al. (1992) for 
details.) 

Exclusion of A) and N2 from recurrent inhibition results in responses composed of a 
three-neuron sparse population code in the equilibrium state. As shown in Fig. 7.5, 
neurons with preferred directions differing by ±135° or more also do not compete. 
Consequences of this absence of inhibition between nearly opposite directions will be 
apparent if you rerun VectorWTA.m with two vectors of length 20 and directions of 
±75°. The result, depicted on the right of Fig. 7.6, is a pair of three-neuron responses in 
nearly opposite directions. The network in (7.5) thus switches from signaling a single 
direction to signaling two directions when the input vectors are sufficiently different. In 
the example of motion perception discussed in conjunction with Fig. 7.4, this corresponds 
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to a switch from rigid to transparent motion as has been experimentally observed (Kim 
and Wilson, 1993). Such a switch in response is termed a categorical decision, because a 
continuous range of stimulus variation (in this case defined by the angle between local 
motion directions) is categorized into discrete responses: rigid or transparent. Further
more, the response to two equal length vectors at ±75° is predicted to be a pair of motion 
vectors at ±82°. Such repulsion between motion directions when transparency is per
ceived has been observed in several experimental studies using a variety of stimuli (Kim 
and Wilson, 1996; Marshak and Sekuler, 1979; Mather and Moulden, 1980). Direction 
repulsion is a direct consequence of the recurrent inhibition illustrated in Fig. 7.5. 
Although the units optimally responsive to directions of ±75° are not mutually inhibi
tory, their neighbors signaling ±60° are, so the population codes are biased away from 
one another by the neural dynamics. 

How can a WTA network produce vector summation? The key is a mathematical proof 
that the vector sum direction fiv is given by the value of fi for which the cosine-weighted 
sum in (7.4) is a maximum (Wilson et al., 1992): 

fiv = max(Fn) (7.6) 

Although true for any number of vectors, let us prove here that the sum of two vectors 
points in the direction is given by (7.6). Let the two vectors have lengths L\ and L2 and 
point in directions 9\ and 82 . Thus, the x and v coordinates of the first vector will be 
L\ cos(#i) and L\ sin(t9j) respectively with similar terms for the second vector. Vector 
summation is accomplished by adding the x and y coordinates according to the formula: 

L,cos(0,)\ f L2cos(92)\ ( L[cos(9l) + L2cos(92)\ 
Li sin({9,) ) \ L2 sin(02) J ~ \ L\ sin(0,) ± L2 sm(92) ) ( ' ' 

The direction in which ('points, fiv, the vector sum direction, is just arctan( y/x) or: 

/
/F|Sin((J l)±L2sin(c?2)^ 

fiv = arctan — —— (7.8) 
\L|Cos(0i) + L2cos(92)J 

Now consider the cosine-weighted sum in (7.4): 

En = L\ cos(fi -6i) + L2 cos(fi - 92) (7.9) 

To find the maximum, set the derivative with respect to fi equal to zero: 

— = - L i s i n ( n - 0 i ) - L 2 s i n ( f i - 0 2 ) = 0 (7.10) 
dfi 

Using the trigonometric substitution: 

sin(fi - 0,) = cos(0,) sin(fi) - cos(fi) sin(0,) (7.11) 
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and a similar one for the second term in (7.10), we arrive at: 

{£, cos(0,) ± L2 cos(02)} sin(fi) - \L] sin(0,) ± L2 sm(92)} cos(fi) = 0 (7.12) 

This is easily solved for fi to give the result in (7.8). It is also easy to show that the 
maximum value of F n is the length of the resultant vector. This completes a proof of (7.6). 

The mechanism permitting WTA networks to perform vector summation should now 
be apparent. In a WTA network, the neuron that wins the competition is the one receiving 
the maximum stimulus. So, a WTA network with cosine-weighted inputs given by (7.4) 
will compute the maximum and solve (7.6) for the vector sum, and it will do so using 
parallel processing for any number of input vectors. Sparse population coding makes it 
unnecessary for the winning neuron to signal the exact vector sum direction. The program 
VectorWTA.m can be used for any number of input vectors simply by activating (i.e. 
removing the %) the line asking the number of input vectors. 

Vector summation provides an important example of a WTA network that can 
accomplish complex and important calculations. All that is required is cosine weighting 
of the network inputs according to eqn (7.4) plus competitive inhibition among the 
network outputs. Cosine weighting appears to be ubiquitous in the nervous system 
(Georgopoulos <??<//., 1986, 1993; Theunissen and Miller, 1991; Lewis and Kristan, 1998). 
With respect to motion, we predicted that a WTA competition should occur in MT 
(middle temporal) cortex, a primate and human motion analysis area (Wilson et al., 
1992). Definitive evidence for a WTA computation in primate MT was subsequently 
provided by Salzman and Newsome (1994). One caveat: the vector summation expla
nation of motion perception requires computation of additional nonlinear or 'second 
order' motion signals from the stimulus, an operation for which there is extensive 
psychophysical and physiological evidence (Wilson et al., 1992; Wilson, 1994a, 1994b; 
Smith, 1994; Albright, 1992; Mareschal and Baker, 1998). 

In addition to our work (Wilson et al., 1992; Wilson and Kim, 1994) on motion per
ception, both Touretzky et al. (1993) and Abbott (1994) subsequently explored neural 
network models for vector summation using cosine-weighting functions. 

7.3 Retinal light adaptation 

The retina represents one of the most heavily studied neural networks of the brain. (The 
retina develops as an outgrowth of the embryonic neural tube, so it is indeed part of the 
brain: the only part visible to the naked eye!) Although many details still remain to be 
learned about the retina, there is already a sufficient wealth of material to permit us to 
develop a fairly sophisticated understanding of its function. We know, for example, the 
major neural cell types and the anatomy of their interconnections. In addition, we know 
how the retinal ganglion cells, the cells that provide output to the brain, respond to 
various light patterns projected onto the retina. The model to be presented here incor
porates key elements of a model proposed recently to explain retinal function in both light 
adaptation and afterimage formation (Wilson, 1997). Excellent summaries of the ana
tomical and physiological literature may be found in several reviews (Dowling, 1987; 
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Light 

To brain 

Fig. 7.7 Schematic diagram of anatomical connections among principal retinal cell types: cones (C). 
horizontal cells (H), bipolar cells (B). amacrine cells (A), ganglion cells (G), and interplexiform cells (P). 
Excitatory synapses are shown as arrowheads and inhibitory synapses as solid circles. 

Wiissle and Boycott, 1991) and a comprehensive recent book by Rodiek (1998). A sum
mary of fundamental data on light adaptation may be found in Hood (1998).. 

Key aspects of retinal anatomy are summarized in Fig. 7.7. Light impinges on the cone 
photoreceptors (C) in the retina, and these respond by stimulating both the bipolar cells 
(B) and the horizontal cells (H). As we saw in Chapter 3, there is evidence that the hori
zontal cells provide subtractive inhibitory feedback onto the cones and also feedforward 
inhibition onto the bipolar cells. The bipolar cells activate both the amacrine cells (A) and 
the ganglion cells (G), which provide the retinal output by sending their axons to various 
brain centers. Amacrine cells provide negative feedback onto the bipolar cells, and this is 
hypothesized to be shunting or divisive in nature (Wilson, 1997). In addition, the ama
crine cells contact interplexiform cells (P), which provide feedback onto the horizontal 
cells. Extensive evidence indicates that this amacrine to interplexiform to horizontal cell 
feedback circuit is neuromodulatory in nature and uses the neurotransmitter dopamine 
(Dowling, 1991; Witkovsky and Schiitte, 1991). The interplexiform feedback circuit 
operates very slowly by neural standards, with a time constant on the order of several 
seconds rather than tens of milliseconds. 

The simplified retinal model in Fig. 7.7 is comprised of six cell types at each spatial 
location. In actuality, there are multiple types of bipolar, amacrine, and ganglion cells, but 
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restriction to one of each will suffice to explore the dynamical principles involved in 
retinal light adaptation. Our model ignores the fact that there are on the order to 106 

neurons of each type in the retina, but this is equivalent to restricting visual stimuli to large 
uniform fields of light that adapt all parts of the retina equally (see Wilson (1997) for a 
model including spatial distributions of each cell type). Let us analyze the six cell circuit in 
Fig. 7.7 to examine light adaptation. The circuit equations are: 

dB 1 / 6C-5H 
B dt ,0 V 1+9A, 

dA 1 , 
— = —(-A + B) 
d? 80 l 

dF 1 
— = (-P + 0.1A) 
dt 4000 
dG 1 ( 505 

-G dt 10 V 13 + B 

Several aspects of these equations deserve comment. First, the spike rate of the ganglion 
cell G is described by a Naka-Rushton function from (2.11) with N= 1. Indeed, this 
function was first applied in neurobiology to describe the spike rate of retinal ganglion 
cells, and N= 1 was found to give a good fit (Naka and Rushton, 1966). The dC/dt 
equation incorporates subtractive feedback from H cells. Note, however, that the 
strength of this is modulated by the P cell feedback loop. Thus, the H cell feedback will be 
strong at high light levels and weak in dim light. Feedback from A cells is described by a 
divisive term in the d5/d? equation. Finally, note that the time constants are 100ms or 
faster, with the exception of rp = 4000 ms. This means that the dF'd? equation will change 
extremely slowly relative to the other retinal dynamics, which agrees with the physiology 
cited above. 

To analyze (7.13) we shall, as always, first examine the equilibrium state. At 
equilibrium: 

C= -PH+ L 

H = C 

B = 6C-5H 

' ' 9A (7.14) 
A = B 

P = 0.\A 

SOB 
G ~ 13 ± B 
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As the retinal output G depends only on B, the remaining equations may be solved for B. 
The three simple identities at equilibrium II =C, A = B, and P = 0.\A, may be used to 
simplify the equations for C and 5: 

C 

B 

10Z, 
10 +B 

c 
(7.15) 

± 9 5 

Substituting the first equation in (7.15) into the second gives: 

5(10±5)(1 +9B) = 9B} +9\B2 + 105= 101 (7.16) 

This cubic equation can be solved using the MatLab roots function for any given light level 
L. As a useful analytical approximation, however, let us consider two limiting cases, L 
very small and L very large. In the former case the 5 term will predominate, so 5 w 10F, 
and the network produces no stimulus attenuation. When i > 1, the 5 3 term will be 
largest, so 5 « L1''3. Thus, the network will produce dramatic stimulus compression in 
response to very intense light. 

To appreciate the importance of light adaptation, let us first consider what would 
happen if the ganglion cell received a direct input from the cones that bypassed the 
adaptation circuitry. A fundamental task for the visual system is to discriminate between 
two stimuli to determine which has the higher light intensity. In the absence of light 
adaptation, two stimuli L and L + A will produce the following ganglion cell response 
difference 6G in the steady state: 

6G= 5 0 ( L + A ) - - 5 0 ^ - . (7.17) 
1 3 ± ( L ± A ) 1 3 ± F V ' 

Suppose that at threshold human subjects can just discriminate between two light 
intensities when 5G — 1, i.e. when the ganglion cell spike rate differs by a small criterion. 
On the assumption that A is small at threshold, (7.17) can be expanded as a first order 
Taylor series in A with the result: 

- ^ 

This equation, first derived by Shapley and Enroth-Cugell (1984), shows that the smallest 
discriminable difference in light intensity between two stimuli will increase with L~ as L 
becomes large. Equation (7.18) is plotted as a function of light intensity L (in units of 
trolands) by the dashed line in Fig. 7.8. The solid circles plot data from a study by Fin-
kelstein, Harrison, and Hood (1990). These authors observed that retinal light adaptation 
takes some time to develop, so briefly flashed stimuli can largely bypass the light adap
tation process, and the solid data points were gathered under these conditions. In con
sequence, discrimination thresholds get very large (i.e. very poor), and discrimination 
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Fig. 7.8 Thresholds for detecting a brief light flash as a function of background light intensity. Solid circles 
plot thresholds under conditions minimizing retinal light adaptation, while open circles show analogous 
results for the fully adapted retina (Finkelstein et ai. 1990). Solid and dashed lines are the predictions of 
(7.13) under adapted and unadapted conditions, respectively. 

becomes impossible for light intensities to the right of the double-headed arrow. The 
reason for this is saturation of the ganglion cell firing rate G. 

One role of retinal light adaptation is to compress the neural input to the ganglion cells 
so as to avoid response saturation. The MatLab program Retina.m implements a fourth 
order Runge-Kutta simulation of (7.13). The program first requests a background light 
adaptation level L to which the model will be adapted by solving (7.16) for the steady state 
and then using this value to solve for the equilibrium values of all other variables in (7.14). 
The program then requests a change in luminance A and this is abruptly added to the 
background 100 ms into the simulation. If you run the simulation with L = 100 and A = 5. 
you will see that there is a transient burst in ganglion cell (G) response to the increment 
that reaches a value of 1.53 above the adapted level and then drops back to a new level 
of adaptation. Given our previous assumption that the threshold value of A occurs when 
the G cell increment is 1.0 above its former baseline, this represents a suprathreshold 
response. By simulating responses to a number of smaller A values it is possible to home in 
on the threshold quite accurately (for L= 100 the threshold is between 3.0 and 3.5). 
Threshold values thus obtained are plotted as a solid curve in Fig. 7.8. The comparison 
data, again from Finkelstein et al. (1990), were obtained by first letting the retina adapt 
to a uniform background of intensity L and then flashing the incremental test stimulus, 
just as in the simulation of (7.13). As shown by the double-headed arrow at L = 400. light 
adaptation improves thresholds here by about 40 times. Furthermore, light adaptation 
increases the intensity range over which discrimination is possible from about L = 400 
(no adaptation) to about F = 40 000 (adapted state). Thus, retinal light adaptation greatly 
extends the range over which effective visual discrimination is possible. 

One consequence of retinal light adaptation is the production of retinal afterimages. 
Afterimages occur when adjacent patches of retina are adapted to different light inten
sities. To experience a retinal afterimage, fixate the cross on the white and black bar 
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Fig. 7.9 Fixation of the cross on the left for about 15 s followed by a shift of gaze to the right cross will 
produce a negative retinal afterimage of the bars against the gray background. 

pattern in Fig. 7.9 for about 15 s, then switch your gaze to the cross in the uniform gray 
field. You will perceive a set of low contrast bars with a darker bar located behind the 
cross (the bars will shift back and forth a bit due to small eye movements on your part). As 
a dark bar underlies the cross, this is a negative afterimage: light adaptation in your retina 
has caused it to signal that uniform gray areas are darker following adaptation to white 
but lighter following adaptation to black bars. 

The MatLab script Retina.m can also be used to simulate this phenomenon. Suppose 
that the white bars in Fig. 7.9 have an intensity of 2000, the black bars an intensity of 1, 
and the gray field an average intensity of 1000. Running Retina.m with L = 1 and A = 999 
reveals that patches of retina adapted to dark bars will produce a steady state ganglion cell 
firing level G = 22.2 when subsequently stimulated by the gray pattern. To simulate the 
afterimage to white bars, run the program with L = 2000 and A = -1000. The response to 
gray is now L= 18.0, so the uniform gray pattern will appear darker where the retina had 
adapted to light bars. Thus, the formation of negative afterimages can be explained by the 
dynamics of retinal light adaptation. The slow time course of afterimage decay is a further 
phenomenon explained by the dynamics of (7.13). Experimental measurements have 
revealed that negative afterimages decay exponentially with a time constant of 3-5 s 
(Burbeck, 1986; Kelly and Martinez-Uriegas, 1993). In (7.13) only the time constant for 
neuromodulation by the interplexiform cell P is sufficiently long to account for this. Thus, 
the slow build-up and decay of retinal neuromodulation results in the slow decay of 
negative afterimages. Other aspects of afterimage formation can also be explained by this 
mechanism (Wilson, 1997). 

7.4 Wilson-Cowan cortical dynamics 

Networks in the cortex can produce much more varied and complex dynamics than those 
exhibited by the retina. Indeed, cortical circuitry is sufficiently complex that we are 
nowhere close to understanding it in any detail. In consequence, it has been fruitful to 
analyze simplified models of cortical circuitry and dynamics. It has been known for at 
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least half a century that cortical neurons may be subdivided into two classes: excitatory 
(E) neurons which are usually pyramidal cells providing cortical output, and inhibitory (I) 
interneurons with axons that generally remain within a given cortical area. Furthermore, 
anatomical evidence (Sholl, 1956; Szentagothai, 1967; Colonnier, 1968; Scheibel and 
Scheibel, 1970; Douglas and Martin, 1998) suggests that all forms of interconnection 
among these cell types regularly occur: E —> E, E —> I, I —• E, and I —* I. Given evidence for 
these common aspects of cortical architecture, we proposed that cortical dynamics might 
profitably be studied through analysis of the simple basic network illustrated in Fig. 7.10 
(Wilson and Cowan, 1973). This network incorporates two cell types distributed in space 
and interconnected in all possible ways. Consistent with anatomy, the recurrent excita
tion remains relatively localized spatially, while inhibitory connections extend over a 
broader range. Similarly balanced interactions between F and / neurons have been 
proposed recently to explain a diverse range of cortical phenomena (Douglas and Martin, 
1991; Adinie/a/., 1997; DeBellis et al., 1998; Somers et al, 1998). 

The original Wilson-Cowan (1973) equations were written in the form: 

dF(A') 

dllx) 

T-^=-I(x)+ 1 
d? 

E(x) + (1 - kE(x))SE J2 M 'EE£W - J2 " ' IE / (-V) + P{x) 

kI(x))Sl I YJ wElE(x) - J J U,|/(A) ± (2(A) j 

(7.19) 

where F(.v) and /(.v) are the mean firing rates of neurons at position x, and P, Q are the 
external inputs to the network. The four connectivity functions u„ represent the spatial 
spread of synaptic interconnections in the network. Based on the work of Sholl (1956) 
these functions were chosen to be decaying exponential functions of distance: 

Wjj(x - .v') = by exp(-|.v - x'\/ojj) (7.20) 

Cortical Position 

Fig. 7.10 Network of excitatory (arrows) and inhibitory (solid circles) interactions among /fand /neurons 
in cerebral cortex. Excitatory interactions among the E cells have a short spatial extent, while inhibitory 
feedback from / cells is longer range. For clarity, only one / neuron is shown. 
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where by gives the maximum synaptic strength, CT,; is the space constant controlling the 
spread of connectivity, and /',/'= F, /. One might just as easily have chosen a Gaussian 
function to describe the synaptic connectivity, but any monotonically decaying distance 
function will give rise to the same types of dynamical behavior. The sigmoidal nonlinear 
functions S were originally chosen to be hyperbolic tangents, but here we shall use the 
Naka-Rushton function from (2.11) with /V= 2 instead: 

Finally, (7.19) can be transformed by setting A: = 0 to obtain equations in which 5 
describes the neural spike rate. The resulting network equations are: 

T ^7T = ~ £ ( v ) + 5E ( ^ " ' E E £ ( Y ) - Y, "'IE/(V) + P{x) 

T 7i7 = ~I(x) + 5l ( E M'EI£M - E '"'"'M + 2W 

(7.22) 

where it',/ and 5, are defined in (7.20) and (7.21) respectively. These equations exhibit the 
same dynamics as (7.19). 

In a complex neural network like (7.22) one is immediately confronted with the issue of 
choosing reasonable values for the various parameters, and this must generally be done in 
the absence of experimental evidence adequate to specify them all precisely. However, it is 
generally possible to use appropriate physiological constraints to place bounds on rea
sonable parameter values. Three such constraints are particularly important in studying 
spatially extended neural networks. First, the resting state F = 0, 7 = 0 should be 
asymptotically stable so that the network will not respond to small random inputs. Given 
the form of S,, this condition is automatically satisfied, since (7.22) linearizes to 
T dE/dt = —E, T dl/dt = —I'm the neighborhood of the resting state. Second, the spatial 
spread of recurrent inhibition is generally greater than that of recurrent excitation. This 
condition will be satisfied if: 

0"EI = <7"IE > 0"EE ( 7 . 2 3 ) 

The final condition is that there should be no spatially uniform steady states other than 
the resting state in the absence of external stimulation. States of uniform excitation 
throughout a network have little interest, as they do not occur physiologically (except 
possibly during seizures). In a uniform state E(x,t) = E(t) and I(x,t) = /(?). Let us 
therefore approximate the spatial sums in (7.22) weighted by the connectivity functions ir„ 
as integrals over an effectively infinite distance (i.e. a distance large with respect to the 
space constants a if): 

fX byexp(-|.v|/(r,/) d.v = IbijO-ij (7.24) 
J — OO 
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In other words, if neural responses are uniform across the network, then the spatial 
connectivity functions become constant products of their parameter values. 

As the maximum possible values for F and / are both 100 given the form of 5„ the 
following two inequalities will be sufficient to guarantee that no spatially uniform steady 
state can exist in the network: 

100(2/3EEaEE - 2/3IEcrIE) < 9E 

lOO(2/3E,crEI-2/3„<7„)>0, 

where the constants 0, are the semi-saturation constants of the S, functions in (7.21). The 
first of these inequalities guarantees that the maximum amount of recurrent excitation in 
the network can be overcome by the strength of recurrent inhibition and driven below the 
excitatory semi-saturation value 0£. The second inequality in (7.25) guarantees that the 
excitatory input to the inhibitory neurons will drive the inhibitory neurons above their 
semi-saturation value 0/. Thus, network inhibition will ultimately drive any uniformly 
excited state down to the resting state. 

Despite choosing parameters that preclude the existence of any uniform activity states, 
the Wilson-Cowan equations exhibit a wide range of dynamical behaviors. To demon
strate this, let us first fix the spatial and temporal parameters at the following plausible 
values: ? = 10 ms; aEE = 40 pm; o\E = crEi = 60 um; nu = 30 urn. Notice that these values 
satisfy (7.23). In addition, the semi-saturation constants in (7.21) will be assigned the 
values 0E = 20 and 0] = 40. Finally, it will be convenient to reduce the number of 
remaining parameters by requiring AIE = bE\. The three remaining connection strengths, 
bEE, bEi, and bu will always be chosen to satisfy inequalities (7.25). 

As the simplest example to understand, let us first consider the short-term memory 
mode of (7.22), which can be produced by the parameter values bEE = \.95.bE\ = 1.4, and 
bn = 2.2. The equations with these parameters are implemented in MatLab script 
WCcortexSTM.m. This program permits you to specify the width of a stimulus pulse 
which is then presented to the network at an intensity 5 = 1.0 for just 10 ms. Using a 
lOOum-wide stimulus, for example, produces the final activity state plotted in the top 
panel of Fig. 7.11. Although the stimulus was only on for 10 ms. the network switches to 
an asymptotically stable steady state that is approximately the same width as the stimulus. 
Rerunning the program with a 1000-z.im-wide stimulus triggers the network into the final 
state shown in the bottom panel of Fig. 7.11. Following brief stimulation, therefore, the 
network switches into a state that retains information about stimulus location and width 
encoded as a self-sustaining neural activity pattern. This represents a more realistic 
generalization of the prefrontal short-term neural memory discussed in the previous 
chapter, and it foreshadows aspects of hippocampal memory networks to be discussed 
in Chapter 14. 

Although parameters have been chosen to satisfy (7.25) so that no spatially uniform 
steady states can exist, the simulations clearly demonstrate that spatially inhomogeneous 
states with asymptotic stability do exist. The qualitative reason for this is that short-range 
recurrent excitation can stabilize a narrow pulse of neural activity while the longer range 
inhibition prevents the excitatory activity from spreading. The mathematical principles 
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Fig. 7.11 Responses of Wilson-Cowan equations (7.22) to 10ms stimulation by a 100pm spatial stimulus 
(above) or a 1000pm spatial stimulus (below). These are asymptotically stable short-term memory patterns 
maintained by recurrent excitation and inhibition within the network after stimulation has terminated. 

supporting this behavior may be revealed by considering a spatial system of linear 
equations with all the forms of interconnection present in Fig. 7.10: 

dF 
7T = 

d/ 
dV 

E+ X-T exp(-|.Y - x'\/4)Edx' - I jf exp(-|.v - .v'|/8)/d.v' 

exp(-|.Y - .V|/8)£d.V - ? / * exp(-|.v - .r'|/3)/d.x' 
(7.26) 

This is the typical form produced by linearization of (7.22) around a spatially uniform 
steady state produced by constant input values of P and Q. The spatial summations in 
(7.22) have been replaced by integrals here for analytical simplicity. Note, however, that 
the space constant for the E-E connections (4) is smaller than that for the F-7 and I-E 
connections (8) in agreement with requirement (7.23). Equation (7.26) is an integro-
differential equation that is differential in time but integral in space, and its stability 
characteristics may be examined by letting Fand /be cosine functions of spatial position 
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with spatial frequency u>: 

E(x, t) = E(t) cos(w.v) and I(x, t) = /(?) COS(CJ.Y) (7.27) 

If these expressions are substituted into (7.26) it is now possible to evaluate all of the 
spatial integrals because (Gradshteyn and Ryzhik, 1980): 

exp( X - X O cos(uix') dx 
2fjcos(o.'.Y) 

1 ± (<7^Y 
(7.28) 

Given this result. Equation (7.26) is now reduced to the following pair of linear differ
ential equations for F(?) and /(?): 

d F 

7~ 
d/ 

d? : 

2F 4/ 

1 ± 

4/ 
(7.29) 

1 ± (8w)~ 1 ± (3a.-)-

(This approach is equivalent to Fourier transformation of the equations with respect to 
.v.) Equation (7.29) is now just a linear second order differential equation with coefficients 
that depend on the spatial frequency 

/ - 1 ± 2 

± (4w)-

and the characteristic equation is: 

* \ 
1 ± (8OJ) -

4 

V (8a;)-

A 

1 ± ( 3 w ) 2 / 

0 (7.30) 

The eigenvalues of (7.30) display surprising behavior as a function of the spatial fre
quency u>. For u = 0, (7.27) is spatially uniform, and (7.30) gives A = - 1 . - 3, so the 
uniform state is asymptotically stable. Similarly, a s i j ^ oo the eigenvalues approach 
A = - 1, - 1 , so any rapidly varying spatial state also decays asymptotically to the resting 
state F = 0. / = 0. However, the behavior is very different over a range of intermediate 
spatial frequencies: for 0.085 < UJ < 0.22, one value of A becomes positive so that the 
resting state becomes an unstable saddle point. For w = 0.15, for example, 
A = ±0.17, -4 .03 . Thus. (7.26) is unstable with respect to perturbations of intermediate 
spatial frequency. (The human visual system is also most sensitive to intermediate spatial 
frequencies.) 

The connection between (7.26) and the Wilson-Cowan (1973) equations (7.22) can now 
be made. Had we linearized (7.22) about a spatially homogeneous equilibrium state, the 
resulting linearization would have had exactly the form of (7.26), albeit with different 
coefficients (see Appendix to Wilson and Cowan (1973) for details). This leads to the 
prediction that certain spatial frequencies of stimulation, even of very small amplitude, 
will cause the system to spontaneously switch from a state of uniform neural activity to a 
spatially patterned state. You can verify this by running WCstability.m, which imple
ments (7.22) but with constant spatial inputs P = 31.5 and Q = 32.3 that cause the 
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Fig. 7.13 Amplification (or active transient) produced by Wilson-Cowan equations (7.22) in response to a 
brief, weak stimulus. Recurrent excitation in the network causes E(t) amplification, peaking about 20ms after 
stimulus termination. 

spatially uniform resting state to shift to E = 0.25, / = 3.85. Each time the script is run a 
5.0 ms pulse of a tiny spatial perturbation, 0.01 COS(27TCJ.Y), is added to P with the spatial 
frequency LO (an integer) specified by the user. For low spatial frequencies, u = 0,1,2, the 
small perturbation has no effect, and the system decays back to its uniform equilibrium 
state. Similarly, for a; > 40, the uniform state is again asymptotically stable. However, for 
spatial frequencies in the approximate range 5 < w < 12, the tiny perturbation causes the 
system to explode into a spatially inhomogeneous, asymptotically stable steady state, 
such that plotted in Fig. 7.12 for w = 8. Note that the program simulates 300 ms of time, so 
the 5.0 ms perturbation giving rise to the spatially structured state is long gone before the 
instability erupts. It is this spatially structured instability that gives rise to the short-term 
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memory capabilities of (7.22) as illustrated in Fig. 7.11. These spatial instabilities result 
because the linearization of (7.22) takes the general form of (7.26). 

In addition to a short-term memory mode, the Wilson-Cowan (1973) equations sup
port several qualitatively different dynamical behaviors. One of these, which was termed 
the 'active transient mode', may be observed by running the script WCcortexAT.m, which 
uses the parameter values hEE = 1.5, hE] = 1.3. and bu = 1.5 (all other parameters 
remaining the same). As illustrated in Fig. 7.13, a brief 5 ms spatial stimulus presented to a 
restricted area of the network gives rise to a delayed, but very large, amplification of the 
network response. In the case depicted, the E response grows from about 1.0 at the end of 
the stimulus period to about 28.0 some 20 ms later. The explanation for this dramatic 
response amplification in the active transient mode is that local recurrent excitation in the 
network causes excitatory activity to flare up, but this in turn triggers a delayed inhibitory 
pulse that subsequently extinguishes the network activity. As will be seen in the next few 
chapters, there are mathematical similarities between this network amplification and 
action potential generation. Such transient signal amplification was initially proposed to 
be appropriate for detection of weak stimuli by visual and other primary sensory cortical 
areas (Wilson and Cowan, 1973). Transient amplification generated by a balance of 
recurrent excitation and inhibition has been rediscovered and extended by Douglas et al. 
(1995). 

A third dynamical mode of the Wilson-Cowan (1973) equations produces spatially 
localized oscillatory activity. Appropriate connectivity values. bEE = 1.9, bE\ = 1.5, and 
bu = 1.5, have been incorporated into the script WCeortexOSC.m. Running this script 
with a constant spatial stimulus of width 100 urn will produce a spatially localized 
oscillation with the F(?) waveform plotted in Fig. 7.14. Each peak of this oscillation 
corresponds to a burst of action potentials at a peak rate of about 50 Hz. Even more 
complex oscillations can be produced by stimuli of greater widths. For example, a 
constant stimulus 400 urn wide produces a spatially adjacent pair of synchronized 

100 
Time (ms) 

150 200 

Fig. 7.14 Spatially localized oscillation produced by (7.22) in a different parameter ran ge. 
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Fig. 7.15 Traveling neural activity waves produced by (7.22) when inhibition is sufficiently weak. From top 
to bottom, panels show spatial activity patterns at three successive times (16. 24, and 40 ms) after termination 
of a 5 ms stimulus pulse to the center of the network. Such waves may be a neural component of abnormal 
states like epilepsy. 

oscillations. A stimulus 800 um in width produces an even more complex oscillation with a 
pair of synchronized flanking regions oscillating out of phase with a narrow central 
oscillation. The dynamical basis for both nonlinear oscillations and synchrony between 
interacting oscillators will be covered in the next several chapters. 
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Finally, the Wilson-Cowan (1973) equations can produce traveling waves of neural 
activity in response to brief local stimulation in an appropriate parameter range. Suffi
cient conditions are that the parameters be the same as in the oscillatory mode just 
described but that the inhibition be severely reduced in effectiveness. This can easily be 
accomplished by providing a constant inhibitory input to the I cells. The MatLab script 
WCcortexWAVES.m incorporates the same parameters as the oscillatory mode but 
incorporates reduced inhibitory effectiveness by setting Q = -90. Running this script will 
generate the pair of traveling neural activity waves illustrated in Fig. 7.15 in response to a 
5 ms stimulus to the center of the network. These waves originate because the reduced 
inhibitory activity is not sufficient to contain the activity generated by recurrent acti
vation. These traveling waves are followed by a refractory area where the inhibition has 
built up. Because of this trailing refractory zone, two waves that meet will annihilate one 
another. This phenomenon can be observed by triggering waves at two points in the 
network simply by changing the commenting (lines beginning with %) as indicated in the 
program. Traveling waves such as these may occur in epileptic seizures and other forms of 
abnormal neural activity. 

Waves of neural activity are also known to be important in retinal development (Feller 
et al.. 1996). Before the photoreceptors become active, a network of amacrine cells 
interconnected by excitatory synapses begins to generate traveling waves of neural 
bursting. These traveling waves are important in the development of normal connection 
patterns from the retina to the lateral geniculate nucleus (LGN), presumably causing 
coordinated synaptic modification in the latter structure. Feller et al. (1997) have 
developed a neural model to predict these wave phenomena. Short-range excitatory 
interconnections among amacrine cells cause waves to propagate across the tissue. The 
role of inhibition is played by neural adaptation or a refractory period in the amacrine 
cells following bursting. Finally, the amacrine activity is spatially pooled to produce 
ganglion cell outputs to the LGN. Whereas the Wilson-Cowan (1973) equations generate 
waves via recurrent excitation and delayed inhibition, the Feller et al. (1997) model 
employs only one cell type with recurrent excitation but with a delayed refractory period 
following activity. Thus, common dynamical principles (but differing physiological 
realizations) underlie these two examples of neural traveling waves. More complex 
methods for producing neural traveling waves are discussed in Chapters 12 and 13. 

As virtually all areas of the brain incorporate both excitation and inhibition, the 
Wilson-Cowan (1972. 1973) equations may be regarded as a canonical model of a wide 
range of complex dynamics emerging from such interactions. Indeed. Hoppensteadt and 
Izhikevich (1997) provide a current and extensive catalog of Wilson-Cowan dynamics. 
Furthermore, the Wilson-Cowan equations have recently provided explanations for 
psychophysical data (Adtni et al., 1997), EEG waveforms during epileptic seizures 
(DcBcllis et al., 1998). and other aspects of neural dynamics (Jirsa and Haken. 1997). 

7.5 Visual hallucinations 

A variety of drugs can induce hallucinations involving stereotypical geometric patterns: 
concentric circles, radial spokes, spirals, or checkerboards with expanding check sizes 
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away from central vision (Siegel, 1977). An elegant study by Ermentrout and Cowan 
(1979) demonstrated that these geometric hallucinations can be predicted from spatially 
inhomogeneous steady states of (7.22) if the equations are extended to two spatial 
dimensions by making each summation a function of both x and y. In addition to 
extending (7.22) to two dimensions, two additional factors were found to be necessary to 
explain visual hallucinations. First, the visual cortex must become sufficiently excitable 
so that spatially inhomogeneous steady states like the one-dimensional example in 
Fig. 7.12 become asymptotically stable. (Such states are appropriate for short-term 
memory but not for normal visual cortex.) In drug-induced hallucinations, the drugs 
presumably potentiate the E —» E connections in visual cortex, thus producing hyper-
excitability. 

The second explanatory factor in hallucinations is the mapping from retina to visual 
cortex. For reasons discussed elsewhere (Wilson et al., 1990), there is an enormous 
magnification of the central retinal representation in cortex relative to that of peripheral 
retina. Furthermore, the left and right halves of the retinas are each separately mapped 
onto the opposite visual cortex. Thus, the map of the right half of each retina onto the left 
visual cortex in humans is distorted approximately as shown in Fig. 7.16, where the 
vertical meridian maps onto the boundary of the cortical representation (Horton and 
Hoyt, 1991). As observed by Schwartz (1980) and Fischer (1973), the polar coordinate 
representation of the retina (/?, 0) is mapped approximately into cortical coordinates ln( 
l+R) and 0, the transformation used to produce the maps in Fig. 7.16. This retino-cortical 
mapping transforms images falling on the retina in highly characteristic ways. As shown 
in Fig. 7.16, concentric circles A-D on the retina would be mapped into the (almost) 
parallel vertical lines A-D in the cortical representation. Likewise, the radial spoke 
pattern E-G maps into (almost) parallel horizontal lines E-G on the cortex. Finally, 
spirals on the retina will map into oblique, parallel cortical lines. 

The important insight of Ermentrout and Cowan (1979) was that asymptotically stable 
steady states of the cortex where neural activity is organized into roughly parallel stripes 
would of necessity be perceived by the subject as patterns of concentric circles, radial 
spokes, or spirals depending on what retinal stimulus would have produced them nor
mally. The final point in explaining hallucinations was to prove that such parallel stripes 
of cortical activity do indeed represent asymptotically stable steady states in a two-
dimensional generalization of (7.22). We have already seen that periodic activity patterns 
can be asymptotically stable in the simulation reproduced in Fig. 7.12, and the analytical 
explanation was presented in eqns (7.26) to (7.30). The two-dimensional generalization of 
(7.30) will contain products of terms in the spatial frequencies related to the .Y and y 
coordinates. Thus, two-dimensional steady states can be periodic in both x and v 
dimensions at once. The various alternatives may be observed by running the MatLab 
script Hallucinations.m. which introduces brief, noisy stimuli to trigger various parallel 
activation patterns in a small (64 x 64) generalization of (7.22). These would cause per
ception of concentric circles, radial spokes, and spirals. The program also demonstrates 
that the network can be triggered into a steady state consisting of roughly equally spaced 
circular patches of neural activity. Such patterns are the cortical correlate of a halluci
nated checkerboard. (The similarity of these neural patterns to tiger stripes and leopard 
spots is not accidental: Murray (1989) has shown that similar dynamical principles 
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Fig. 7.16 Retino-cortical mapping in the human visual system (after Schwartz, 1980 and Hortonand Hoyt. 
1991). The right half of each retinal image maps to the right visual cortex as shown. Thus, concentric circles 
A-D map into almost parallel vertical lines, while radii E-G map into almost parallel horizontal lines. 
Parallel lines of cortical activity during hallucinations, simulated in Hallucinations.m. would thus be perceived 
as circles or radial spokes, depending on orientation. 

mediated by diffusion produce the patterns on animal coats.) Ermentrout (1998) provides 
a more detailed summary of theoretical work on visual hallucinations. 

This chapter has explored some of the richness and complexity of neural networks 
involving various combinations of recurrent excitation and recurrent inhibition. Such 
networks can accomplish vector summation, light adaptation, make perceptual deci
sions, and provide plausible models of short-term memory. The general theme of such 
networks is that short-range recurrent excitation must be balanced by longer range 
recurrent inhibition. Furthermore, networks that are imbalanced for their appropriate 
task, typically in the direction of excessive excitability (or equivalently reduced inhib
ition), provide important models of such neurological states as epilepsy and drug-induced 
hallucinations. Current research trends are to further embellish excitatory-inhibitory 
networks by introducing multiple subpopulations of E and / neurons. As one example, 
Somers et al. (1998) have developed a network model of orientation tuning in visual 
cortex that incorporates selective long-range excitatory connections among neurons with 
similar orientation tuning in addition to the local excitatory and longer range inhibitory 
interconnections embodied in the Wilson-Cowan (1973) equations. In the following 
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chapters, interactions between positive and negative feedback, whether from excitatory 
and inhibitory neurons or from different ionic currents, will be shown to produce a 
complex array of nonlinear neural oscillations and traveling waves. 

7.6 Exercises 

1. Write down the 5 x 5 Jacobian (omit the equation for dG/dt) for the retinal model in 
(7.13). Solve for the steady state and obtain the eigenvalues using MatLab for L= 1, 10, 
100, 1000. Does the nature of the singularity (spiral, node, saddle, etc.) change with light 
intensity? 

2. In the text it is proved that (7.6) with E» given by (7.4) is identical to the vector sum 
direction. Prove that max(Fn) is the length of the resultant vector. 

3. The vector summation network (7.5) can produce either one or two responses to signal 
coherent or transparent motion. Use the program VectorWTA.m to determine the largest 
angle (in whole degrees) between two vectors, each of length 10, that will produce a single 
response peak. Call this angle 0max. Now remove the comment in the program so that you 
can stimulate with three vectors, all of length 10. Let the angles of two vectors be ± 1.20max, 
so that these two vectors alone would produce two peaks in the response. What is the 
response if the third vector is at 0°? Can you formulate a general rule determining whether 
one or two responses will occur? 

4. To see that light adaptation postpones the onset of ganglion cell saturation, perform 
the following simulations using Retina.m. First, let the background L= 10 and determine 
incremental responses for A = 1, 10, 100, 1000, and 105. Now run a second series for 
background adaptation t o L = 1000 and increments A = 10, 100, 1000, and 105. Plot your 
results on log-log coordinates. How does the ganglion cell response change as the level of 
background light adaptation increases? 

5. The following equations might be obtained as a linearized approximation to nonlinear 
dynamical equations of the form (7.22): 

dF 
~d7 
d/ . 5 
d? 

£ + 1 . 5 / exp(-|.v - A-'|)Fd.Y' -j j expH-v - x'\/4)Idx' 
J-3C ^J-X 

21 + 1 T eXP("|A' ~ Y ' l / 4 ) £ d v ' - 4~/X e x P ( - ' v - Y'l/4)/d.Y' 

Analyze the stability of these equations with respect to spatial perturbations of frequency 
u> by utilizing (7.27) and (7.28). What are the eigenvalues for u> ~ 0 and w= oc? Using the 
MatLab eig() function, determine the range of spatial frequencies u for which the equa
tions are unstable. 
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The study of nonlinear dynamical systems in the last two chapters has enabled us to 
analyze rather complex neural networks in terms of the stability of their equilibrium 
states. However, we have yet to consider one of the most exciting and important topics in 
all of dynamical systems theory: nonlinear oscillations. Indeed, nonlinear oscillations, or 
rhythms, are ubiquitous in living organisms. Circadian rhythms, cardiac rhythms, hor
monal cycles, the rhythms of breathing and locomotion (walking, running, swimming): 
all are of the essence of life. Not only are many of these rhythms generated by neural 
networks, but we shall shortly see that even the generation of action potentials in single 
neurons is the result of inherently nonlinear oscillations. 

In linear systems the only possible oscillations involve sines and cosines. These linear 
oscillations form closed circular or elliptical trajectories around an equilibrium point that 
is a center. Furthermore, if the initial conditions are changed even slightly, the result is a 
neighboring oscillatory solution with the same form in the phase plane but a different 
amplitude. No other type of oscillation is possible in a linear system, regardless of whether 
it has two or two thousand dimensions. In the nervous system and other biological sys
tems, there is always some degree of noise resulting from physiological or environmental 
fluctuations. Such noise would continuously alter the amplitude of a linear oscillation, 
causing it to wander around the state space rather aimlessly. Clearly, such a sloppy linear 
oscillation could not control one's breathing or heartbeat very effectively. As we shall see, 
nonlinear oscillations arc largely immune to this noise problem. For this reason alone, it is 
safe to conclude that biological rhythms evolved to be inherently nonlinear. To even begin 
to understand the rhythms of life and the nervous system, it is thus essential to study 
nonlinear oscillations. 

8.1 Limit cycles 

Let us start discussion of nonlinear oscillations with the definition of an oscillation itself. 
A trajectory X(t) of a dynamical system with any number of dimensions is an oscillation if: 

X(T+t) = X(t) for sonic unique T > 0 and all ?. (8.1) 

This states that the system will always return to exactly the same state after time T, and Fis 
therefore called the period of the oscillation. Note that if (8.1) is true for T, it will also be 
true for /VTwhere N is any integer > 0, so the period is defined to be the minimum Tfor 
which (X. 1) is holds. Also, the requirement that 7'be unique excludes equilibrium points. 
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for which (8.1) would otherwise hold. The reciprocal of F, 1 jT, is termed the frequency of 
the oscillation. Note that (8.1) applies to linear systems as well as nonlinear. 

If a linear system is periodic, there are infinitely many periodic solutions within any 
small neighborhood of a given oscillation: as the solution is a sum of sines and cosines, an 
oscillation of any amplitude whatsoever is a solution. (The amplitude is, of course, 
determined by the initial conditions.) Nonlinear systems can also produce analogous 
oscillations, but this is rare in biological systems. Of vastly greater significance is the fact 
that nonlinear systems can generate isolated oscillations that are surrounded by open, 
non-oscillatory trajectories that either spiral towards or else away from the oscillation 
over time. Let us make this precise with a definition: 

Definition: An oscillatory trajectory in the state space of a nonlinear system is a 
limit cycle if all trajectories in a sufficiently small region enclosing the trajectory 
are spirals. If these neighboring trajectories spiral towards the limit cycle as 
? —> oo, then the limit cycle is asymptotically stable. If, however, neighboring 
trajectories spiral away from the limit cycle as ? —• oo, the limit cycle is unstable. 

Figure 8.1 shows schematic illustrations of both asymptotically stable and unstable limit 
cycles in the phase plane of a two-dimensional system. Notice that the definition of a limit 
cycle only requires that trajectories which are sufficiently close be open spirals. The reason 
for this restriction is that many nonlinear systems contain several limit cycles separated 
fromone another. 

Before exploring limit cycles in neuroscience, it will be necessary to develop some 
analytical tools to predict their existence. Let us first restrict our consideration to two-
dimensional systems, as the relevant theorems are both more numerous and more 
intuitive in this case. A very useful theorem due to Poincare, the discoverer of limit 
cycles, states that a limit cycle must surround one or more equilibrium points: 

Theorem 9: If a limit cycle exists in an autonomous two-dimensional system, it 
must necessarily surround at least one equilibrium point. If it encloses only one, 
that one must be a node, spiral point, or center, but not a saddle point. If it 
surrounds more than one equilibrium point, then the following equation must be 
satisfied: 

N- S= 1 

where N is the number of (nodes ± spiral points + centers), and S is the number of 
saddle points. 

The requirement that the system be autonomous means that all coefficients must be 
constant. This guarantees that no trajectory can cross itself. The reason is simple: the 
differential equations describing the system define a unique direction at every point in 
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Fig. 8.1 Closed curves depict an asymptotically stable limit cycle (left) and an unstable limit cycle (right). 
Neighboring trajectories are plotted by arrows. 

Fig. 8.2 Phase plane of a two-dimensional dynamical system with the three steady states indicated. Theorem 
9 indicates that any possible limit cycle must surround one of the sets of steady states indicated by the three 
closed curves. 

state space. If a trajectory were to cross itself, there would have to be two different 
directions specified by the equations at some point, but this is impossible unless the 
coefficients of the equations change with time, which has been prohibited. An intuitive 
grasp of Theorem 9 can therefore be gained from the observation that trajectories ori
ginating inside a limit cycle in the phase plane can never cross the limit cycle because it is a 
closed oscillatory trajectory. Therefore, these trajectories must either originate or ter
minate somewhere, and that must be a steady state (or another limit cycle which itself 
surrounds a steady state, etc.) 

Figure 8.2 illustrates the possible locations for limit cycles in a two-dimensional system 
with three steady states: a node, a spiral point, and a saddle point. In this example. 
Theorem 9 precludes a limit cycle around any pair of the steady states. Note that Theorem 
9 tells us nothing about the exact location or size or even the existence of the limit cycle but 
only about the set of steady states it would have to enclose if it existed. 

Theorem 9 is a necessary but by no means sufficient condition for the existence of limit 
cycles in a nonlinear system. In Chapter 6, for example, we encountered several nonlinear 
systems with multiple steady states, such as two nodes and a saddle point, and yet there 
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were no limit cycles to be found in those cases. What we need is a theorem that specifies 
conditions under which a system must have a limit cycle. Fortunately, such a theorem 
exists for two-dimensional systems. Let us first state the Poincare-Bendixon Theorem and 
then sketch a proof using diagrams. 

Theorem 10 (Poincare-Bendixon): Suppose there is an annular region in an 
autonomous (i.e. constant coefficient) two-dimensional system that satisfies two 
conditions: (1) the annulus contains no equilibrium points; and (2) all trajectories 
that cross the boundaries of that annulus enter it. Then the annulus must contain 
at least one asymptotically stable limit cycle. 

Theorem 10 is easily understood by examining Fig. 8.3. This figure shows an annular 
region (gray) that satisfies the conditions of the theorem. To be consistent with Theorem 9, 
the annulus must surround a node, spiral point, or center, which is plotted as a dot. Note, 
however, that this steady state, although surrounded by the annulus, is not within 
the annular region itself, so it does not violate the conditions of the theorem. Arrows in 
Fig. 8.3 show representative trajectories entering the annulus over both its inner and outer 
boundaries as required by Theorem 10. Once these trajectories enter the annulus, the 
conditions of the theorem guarantee that they can never leave. Also, they can never come 
to rest, because there are no equilibrium points in the annulus. Finally, because the system 
is autonomous, no two entering trajectories can ever cross one another. As trajectories 
entering from region A and region B move closer together, therefore, there must be at least 
one closed trajectory that they approach asymptotically. Thus, there must be at least one 
asymptotically stable limit cycle enclosed within the annulus. This completes an intuitive 
proof of the Poincare-Bendixon theorem. 

It is important to recognize that Theorem 10 specifies that the annulus must contain at 
least one asymptotically stable limit cycle, but the theorem also permits there to be an odd 
number of limit cycles. In this case, the outer and inner limit cycles would have to be 
asymptotically stable, because trajectories entering the annulus across the outer and inner 

Limit 
cycle 

Fig. 8.3 Annulus (gray region) fulfilling the requirements of Theorem 10. Region A contains a steady state 
(unstable), and trajectories enter the annulus from both regions A and B. As indicated, a limit cycle must exist 
within the annulus. 



120 Spikes, decisions, and actions 

Fig. 8.4 Schematic of an annulus (gray region) satisfying Theorem 10 but containing three limit cycles. Two 
are asymptotically stable (solid curves), but the intervening one (dashed curve) must be unstable. A is an 
unstable node or spiral point. Representative trajectory directions are shown by the arrows. 

boundaries must all approach limit cycles (not necessarily the same one). If there is more 
than one limit cycle, asymptotically stable limit cycles must alternate with unstable limit 
cycles. You can convince yourself of this by imagining what would happen to trajectories 
originating between two nested, asymptotically stable limit cycles: they would have to be 
separated by an unstable limit cycle, which is illustrated schematically in Fig. 8.4. 
Although the existence of alternate asymptotically stable and unstable limit cycles may 
seem to be an unlikely occurrence, they are actually predicted by the Hodgkin-Huxley 
equations, and their existence has been experimentally verified! Armed with Theorems 9 
and 10, we are now ready to study limit cycles in two-dimensional neural systems. 

8.2 Wilson-Cowan network oscillator 

As a first application of these criteria to neural oscillations, let us consider a localized (i.e. 
non-spatial) version of the Wilson- Cowan (1972) equations. The equations presented 
here are the simplest example of these equations that possesses a limit cycle. Consider a 
four-neuron network consisting of three mutually excitatory E neurons which in turn 
stimulate one inhibitory I neuron that provides negative feedback onto the three E cells as 
depicted on the left in Fig. 8.5. Neural circuits like this are typical of the cortex, where 
inhibitory GABA neurons comprise about 25% of the total population of cortical cells 
with the rest being mainly excitatory glutamate neurons (Jones, 1995). Thus, the network 
in Fig. 8.5 may be thought of as approximating a local cortical circuit module. 

Let us simplify the Wilson-Cowan network by assuming that all E neurons receive 
identical stimuli and have identical synaptic strengths. Under these conditions we can 
invoke symmetry and set F, = E2 — E3, thereby reducing the number of neurons in the 
network, a procedure sometimes termed subsampling (Wallen et al., 1992). This results in 
the mathematically equivalent two-neuron network shown on the right in Fig. 8.5. In fact, 
we can generalize this argument to any number of mutually excitatory and inhibitory 
neurons with identical interconnections, so the key concept is that of recurrent excitation 
coupled with recurrent inhibition. Note that by reducing the network to two neurons 
(or two neural populations), the recurrent excitation is transformed into equivalent 
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Fig. 8.5 Neural circuit of a network oscillator (Wilson and Cowan, 1972). Excitatory connections are shown 
by arrows and inhibitory by solid circles. The simplified network on the right is mathematically identical to 
that on the left by symmetry if all E —> E connections have the same strength, etc. 

self-excitation by the F neuron. The equations for the spike rates are: 

dF 1 

d? 5V 

d / _ 1 
d ? ~ T o ' 

-E+S(\.6E- I+K)) 

-I+S(\.5E)) 
(8. 

The function 5 in (8.2) is the Naka-Rushton function from (2.11) with N = 2, M = 100, 
and a = 30. These equations indicate that the F neuron receives recurrent excitation with 
synaptic weight 1.6 and also receives subtractive inhibition from the / neuron. The 
external input that drives the network is K, which is assumed constant. The / neuron 
receives excitatory input from the E neuron with weight 1.5, and the time constants for E 
and /are 5ms and 10ms respectively. When K = 0, it is easy to verify that F = 0, / = 0 
is the only equilibrium point and is asymptotically stable. In an intermediate range of 
lvalues the dynamics change, however, and limit cycle oscillations result. 

Let us examine the state space of (8.2) in order to prove the existence of limit cycles for 
K = 20. The isocline equations are: 

E= S(\.6E-I+ K) 
(8.3) 

I=S(\.5E) v ; 

The second of these equations is easily plotted in its current form and is shown by the 
dashed line in Fig. 8.6. To plot the first isocline, however, we must employ the inverse of 
S(x), which is obtained as follows: 

S(x) 

so y = S(x) has the inverse: 

M-

Mx2 

for 0 < y < M (8.4) 
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Fig. 8.6 Limit cycle of the Wilson-Cowan (1972) equations (8.2). Results are plotted in the phase plane 
(above) along with the two isoclines from (8.3) and (8.5). The lower panel plots £(r) (solid line) and R(l) 
(dashed line) as functions of time. 

Therefore, the first isocline in (8.3) becomes: 

/ = \.6E+K (8.5) 

As M = 100 and o = 30, the resulting isoclines for A' = 20 are plotted in the E-I state 
space in Fig. 8.6. Note that there is a unique equilibrium point, which is the solution of 
(8.3) with the first equation transformed into form (8.5). To solve for the equilibrium, we 
simply substitute the second equation in (8.3) into (8.5) to get: 

A/(1.5F)-

a2±(1.5F)2 
1.6F-20±cr 

M 
(8.6) 
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MatLab provides an easy method for solving (8.6): write a function script for the left-hand 
side of (8.6) (called WCequilib.m on the disk) and use the command fzero('WCequilib', 
guess) where 'guess' is a first approximation to the answer. This is all implemented in 
MatLab script Equilibrium WC.m, which finds that F= 12.77 at equilibrium, so 7 = 28.96 
from (8.3). 

Given the values of Fand /a t equilibrium, we can now calculate the Jacobian of (8.2). 
Using the formula for dS/d.v in (6.10): 

0.42 —0 39 \ 
Q 3 2 _QA J ; A = 0.16±0.24i (8.7) 

Thus, the only equilibrium point of the system is an unstable spiral point. We can now 
use the Poincare-Bendixon theorem to prove that (8.2) must have at least one asymp
totically stable limit cycle. Given the fact that the neural response function 0 < S < 100,it 
follows that trajectories can never leave the state space box bounded by 0 and 100. This 
can be proven by considering the values of both derivatives in (8.2) on the boundaries 
of this box: dF/d?>0 when F = 0; dF/d?<0 when F=100; d//d?>0 when / = 0 ; and 
d//d? < 0 when / = 100. This represents an enormous simplification when dealing with 
nonlinear dynamics of neurons: spike rates are always bounded by zero below and a 
maximum value determined by the absolute refractory period. Thus, all trajectories that 
enter the box 0 < F < 100, 0 < / < 100, must stay within it, and all trajectories must also 
leave some small neighborhood of the unstable equilibrium point. Therefore, we have 
created an annulus containing no interior steady states, so by Poincare-Bendixon The
orem 10, an asymptotically stable limit cycle must exist. If you run the MatLab simulation 
WCoscillator.m, you will see that an asymptotically stable limit cycle does indeed exist, 
and it is plotted in Fig. 8.6 for K=20. Experimentation with a wide range of initial 
conditions shows that all trajectories do indeed approach the limit cycle asymptotically. 
In addition, it is interesting to experiment with other values of K in (8.2) to determine the 
stimulus range producing limit cycles. 

8.3 FitzHugh-Nagumo equations 

The simplest equations that have been proposed for spike generation are the FitzHugh-
Nagumo equations. Like the Hodgkin-Huxley equations (see Chapter 9), these equations 
have a threshold for generating limit cycles and thus provide a qualitative approximation 
to spike generation thresholds. FitzHugh was well aware that his equations did not 
provide a detailed model for action potentials but emphasized: 'For some purposes it is 
useful to have a model of an excitable membrane that is mathematically as simple as 
possible, even if experimental results are reproduced less accurately." (FitzHugh, 1969). 
This simplicity will aid in studying limit cycle oscillations. 

The FitzHugh (1961) and Nagumo et al. (1962) equations describe the interaction 
between the voltage V across the axon membrane, which is driven by an input current 
/input and a recovery variable R. R may be thought of as mainly reflecting the outward K+ 

current that results in hyperpolarization of the axon after each spike. As these variables 
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are only qualitatively related to the underlying ion currents, different authors choose 
slightly different parameter values in these equations. Here they will be written as: 

dF / V1
 n r 

— = 10 V- — - / { +/input d ' V 3 ; ( 8 8 ) 
AD 

— = 0.8(- /J+ 1.25 V+ 1.5) 
d? 

Note that the time constant for V is 12.5 times faster than that for R (0.1 ms versus 
1.25 ms), which reflects the fact that activation processes in the axon are much more rapid 
than the recovery processes. The isocline equations are: 

V 
1 ' 'mpm (8.9) 

R= 1.25K+ 1.5 

R — V -- - ± /lnput 

For /input= 0' MatLab procedure roots shows that the only equilibrium point is: 

V = -1.5 
3 (8.10) 

/? = - -

The Jacobian is: 

At equilibrium, therefore: 

A = 
l o - i o r 2 - I O 

1 -0.8 

— / - P S - I 0 \ 
A=( j _ 0 8 J so A = - 1 1 . 6 . - 1 . 7 (8.12) 

Thus, in the absence of any input, the equilibrium is an asymptotically stable node. For 
hyperpolarizing or inhibitory (negative) inputs /, the equilibrium remains an asympto
tically stable node, as the reader can easily verify. 

For depolarizing (positive) /, the situation changes, however. As an example, let / = 1.5. 
For this input, the only steady state is found from roots to be 1=0 , R= 1.5, and (8.11) 
shows that it is an unstable node. So, trajectories must leave some small region sur
rounding the steady slate. If we can now construct an outer closed boundary surrounding 
this node through which all trajectories enter. Theorem 10 can be used to prove the 
existence of an asymptotically stable limit cycle. To construct this boundary, begin at 
point 1 on the dR/dt = 0 isocline in Fig. 8.7, which need only be chosen at an adequately 
large Lvalue (I•'= 3 in this instance). Next, draw a horizontal line until it intersects the d 1' 
d? = 0 isocline at point 2. From (8.8), all trajectories must cross this line moving down
ward and to the left, as d V/dt < 0 and dR/dt < 0 in this region of state space. Now draw 
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dR/dt = 0 

- 3 - 2 - 1 0 1 2 3 

V 

Fig. 8.7 Phase plane for FitzHugh-Nagumo equations (8.8) with isoclines (8.9) for /mpu, = 1.5. Dashed 
rectangle 1234 is the outer boundary of an annulus satisfying the Poincare-Bendixon theorem. As illustrated 
by the arrows, all trajectories crossing the boundary of this rectangle enter it. 

a vertical line down to the intersection with the dR/dt = 0 isocline at point 3. Again (8.8) 
shows that all trajectories must cross this boundary moving diagonally downward to the 
right, because dV/dt > 0 and dR/dt < 0 in this region. Similar reasoning shows that the 
horizontal line 3^1, drawn so that point 4 lies directly below point 1, will be crossed by 
trajectories moving diagonally upward into the rectangle. One repeats this procedure with 
the vertical line from 4 to 1 and finds that all trajectories cross moving toward the upper 
left. This completes our proof of the existence of an asymptotically stable limit cycle in 
(8.8), as all trajectories enter the region defined by the rectangle 1-2-3-4-1, and all leave 
the neighborhood of the unstable steady state. 

To explore the FitzHugh-Nagumo limit cycle further, it is necessary to simulate (8.8) 
using the Runge-Kutta method. Running the script FitzHugh.m with /input = 1.5 produces 
the series of simulated action potentials shown in Fig. 8.8. You can also verify that / = 0.5 
is subthreshold, as no action potentials are generated. Comparing Fig. 8.8 with responses 
from the Hodgkin-Huxley equations depicted in Fig. 9.1 and 9.3 of the next chapter 
shows that (8.8) does not provide a very accurate description of action potential shapes. 
Nevertheless, the FitzHugh-Nagumo equations provide mathematical insight into the 
nature of neuronal excitability, namely that spikes are generated when /mput becomes 
strong enough to destabilize the equilibrium state (see Exercises). 

8.4 Hopf bifurcations 

Theorems 9 and 10 provide us with powerful means to determine whether limit 
cycles exist in a nonlinear system. Unfortunately, however, both theorems are limited to 
two-dimensional systems and do not apply when more than two neurons or two ion flows 
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Fig. 8.8 Action potentials ('(') produced by the FitzHugh-Nagumo equations (8.8) for /,npilt = 1.5. 

are involved. Theorem 9 does not generalize to higher dimensions, because a closed 
trajectory defining a limit cycle oscillation cannot be said to enclose equilibrium points in 
three or more dimensions in any meaningful sense. One might think at first that the 
Poincare-Bendixon theorem (Theorem 10) would generalize to higher dimensions if 
instead of specifying an annulus into which trajectories flow, one specified a solid 
'doughnut' shape in three dimensions or a 'hyper-doughnut' in higher dimensional sys
tems. However, such a ploy also fails to guarantee the existence of a limit cycle, because 
trajectories need not be closed to avoid crossing in higher dimensions. This means that a 
trajectory might remain within the doughnut but be chaotic (see Chapter 11) rather than 
being a limit cycle oscillation. Fortunately, there is one powerful theorem that applies to a 
system with any number of dimensions from two up, the Hopf bifurcation theorem. 

Theorem 11 (Hopf bifurcation theorem): Consider a nonlinear dynamical system 
in A > 2 dimensions that depends on a parameter 8: 

dX 
d? 

= F(X,/3) 

Let Xo be an isolated equilibrium point of this system. Assume that there is a critical 
value 0 = a with the following properties determined from the Jacobian, 
A{B) : (1 )A'n is asymptotically stable for some finite range of values 3 <a. (2) When 
3 = a the system has one pair of pure imaginary eigenvalues A = ±iwwhileall other 
eigenvalues have negative real parts. (3) Xo is unstable for some range of values 
3 > a. Then either the system possesses an asymptotically stable limit cycle over a 
range 0 > a or else it possesses an unstable limit cycle over some range 3 < a. Near 
8 = n the frequency of this oscillation will be approximately w/2tr, and the oscillation 
will emerge with infinitesimal amplitude sufficiently close to a. 
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The Hopf bifurcation theorem is rather complex, and the proof is even more so. 
Qualitatively, however, it is possible to gain a good intuitive grasp of the theorem. As the 
theorem applies to N > 2 dimensions, let us consider a classic two-dimensional example: 
the van der Pol equation, which provided the first model of heart rhythms. Its normal 
form is: 

d.v 

f = "V (813) 
-±=-Jx + y((3-x2) 
dt 

where 0 is the parameter specified in Theorem 11 and to will be shown to be the frequency. 
Inspection shows that (0, 0) is the only equilibrium point of this system. At (0, 0) the 
Jacobian of the associated linear equations is: 

*=( °,2 I) (8-14) 
-or 

so the eigenvalues are: 

\ = -(l3±y/p-4<J) (8.15) 

The three requirements on the eigenvalues listed in Theorem 11 are satisfied when (3 = 0, 
at which A = ±iu). For 0 < 0 the origin is an asymptotically stable spiral point, and for 
/3>0the origin is an unstable spiral. Thus, the Hopf bifurcation theorem indicates that 
near the critical value 0 = 0 there will be a limit cycle solution to (8.13) with a frequency 
near u>/27r. 

The Hopf bifurcation theorem does not tell us whether this is an unstable limit cycle 
occurring when 0 < 0 or an asymptotically stable limit cycle for 0 > 0. Furthermore, 
Theorem 11 doesnotrevealhowclose/Jmustbetozeroforthelimitcycletoexist. However, 
Theorem 11 has done most of our work for us: we know where to look in the parameter space 
to find limit cycle behavior. To explore this further, run the simulation VanDerPol.m 
with values of 0 near zero and with w = 5, so the predicted limit cycle frequency will be 
0.796. Using initial conditions x = 1, y — 0 with 0 = ±0.5, you will readily discover 
that an asymptotically stable limit cycle exists for 0 > 0. Furthermore, you will see that 
even for 0 = 0.5, which is not all that close to 0 = 0, the frequency is remarkably close 
to 0.8. 

This example helps to provide an intuitive feel for the Hopf bifurcation theorem. When 
0 < 0 in (8.13), the origin is asymptotically stable. When 0 = 0 the linearized system 
defined by the Jacobian in (8.14) is stable but not asymptotically stable, and hence line
arization does not reveal whether the origin of (8.13) is asymptotically stable or unstable. 
This is the special case not covered by Theorem 8 in which stability is determined entirely 
by the nonlinear terms. It is instructive to run VanDerPol.m with 0 = 0 in order to view the 
trajectory directions indicated by the arrows in the phase plane. 

The effects of the nonlinear terms in (8.13) on stability when 0 = 0 can be determined 
through a clever calculation. Multiply the first equation in (8.13) by w2.v and the second 
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equation by y and add the two to obtain: 

d.v , d 
u) x — - = u>[ xy, y — = -ofxy — x y 

dt - d? 

so 

•> dx d v 1 d 2 2 ^ 2 2 
urx — + y — = - — (CJ-.Y- + r ) = - A - V ' 8.16 

d? " d? 2 d? 
The intermediate step in the last equation contains the expression (urx ± y2), which isjust 
the formula for an ellipse. So we have shown that any such elliptical contour will change in 
time by getting smaller, as the time derivative is negative (or zero on the axes). Therefore, 
the nonlinear terms in (8.13) guarantee that trajectories will decay towards the origin for 
0 = 0. When 3 > 0, the origin becomes an unstable spiral point, so trajectories must leave 
its immediate vicinity. However, the nonlinear terms will still dominate far from the 
origin, so an asymptotically stable limit cycle must exist at intermediate distances. The 
technique used in (8.16) to determine the stability effect of nonlinear terms is a simple 
application of Lyapunov functions, which will be developed more fully in Chapter 14. 

The final point concerning Hopf bifurcations is the requirement that all roots of the 
characteristic equation in more than two dimensions must have negative real parts at 
0 = 0, except for the one pure imaginary pair. This means that trajectories of the multi
dimensional system will decay onto a two-dimensional subspace on which the remaining 
requirements of Theorem 11 guarantee a limit cycle. This is easy to understand if (8.13) is 
modified to make it into a very simple three-dimensional system: 

d.v 
d 7 = V 

^-=-u?x + y(0-x2) (8.17) 

The additional variable z obeys an equation independent of x and v for simplicity. If 
k < 0, the third eigenvalue of (8.17) is negative, and z will just decay to zero, so an 
asymptotically stable limit cycle will still exist in the x v plane. However, if k > 0, then 
trajectories will move off to infinity in the z direction, so a limit cycle cannot exist. 

In Chapter 6 we studied bifurcations where pairs of equilibrium points, one asymp
totically stable and one unstable (see Fig. 6.5), were created or destroyed. Let us create a 
similar diagram for (8.13) to better understand the sense in which the Hopf theorem 
relates to bifurcations. Because this is the bifurcation of a limit cycle from an equilibrium 
point, we must plot not only the locus of the equilibrium point as 8 changes but also a 
measure of the amplitude of the limit cycle. For the van der Pol equation (8.13) the steady 
state is always at the origin and simply changes from asymptotically stable to unstable as 
0 passes through zero. The amplitude of the limit cycle as a function of 0 must be obtained 
from simulations using VanDerPol.m, and several conventions can be used to plot it in the 
bifurcation diagram. The convention I shall adopt is to choose one of the variables, in this 
case x, and plot both the maximum and minimum values that occur on the limit cycle. 
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Fig. 8.9 Hopf bifurcations. A supercritical or soft bifurcation is depicted on the left, while a subcritical or 
hard bifurcation is plotted on the right. These are also called pitchfork bifurcations because of their shape. 
Limit cycles are indicated by a gray region connecting the maximum and minimum values of a variable x(l) on 
the cycle. Solid lines indicate asymptotically stable states, and dashed lines indicate unstable states. 

To emphasize that these are just two points on the same trajectory, the area between them 
will be shaded light gray. The results for (8.13) are plotted on the left in Fig. 8.9. The other 
convention for bifurcation diagrams is to plot asymptotically stable solutions with solid 
lines and unstable solutions with dashed lines. As can be seen, the asymptotically stable 
limit cycle emerges with infinitesimal amplitude as 0 passes through zero and the origin 
becomes unstable. This is a Hopf bifurcation in which the steady state loses its stability to 
the emerging, asymptotically stable limit cycle. A Hopf bifurcation at which an asymp
totically stable limit cycle emerges as the steady state becomes unstable is called a 
supercritical bifurcation or a soft bifurcation. The particular one in Fig. 8.9 is sometimes 
also called a 'pitchfork bifurcation' because of its shape. The alternative form of bifur
cation in which an unstable limit cycle merges with an asymptotically stable equilibrium 
state, making it unstable, is depicted on the right of Fig. 8.9. This is termed a subcritical 
bifurcation or a hard bifurcation. It will be seen in the next chapter that the Hodgkin-
Huxley equations exhibit a subcritical bifurcation. Note that for both supercritical and 
subcritical bifurcations, the limit cycle amplitude is infinitesimally small arbitrarily close 
toj3 = a. 

8.5 Delayed negative feedback 

The Hopf bifurcation theorem provides an enormously powerful tool for demonstrating 
the existence of limit cycles in dynamical systems in higher dimensions. Let us now apply it 
to a four-dimensional example of a negative feedback circuit with delays. The delays will 
be approximated by additional differential equations as developed in Chapter 4 and 
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©KD 
Fig. 8.10 Negative feedback network with two delay stages, A, and A2 described by (8. 

depicted in Fig. 8.10. Using A| and A: for the delay variables, the resulting system of 
equations is: 

dF 1 
- = -(-E+S(K-A2)) 

dA, _ 1 
~dT~r 

d /_ 1 
d ? " 50 

dA : 

~dT 

S(P) 

(-Ai+E) 

- / ± 6 A , ) 

-A2 + I) 

for P > 0; otherwise SIP) 
100F2 

502 ± P2 

The time constants here are in milliseconds. For stimulus K= 350. the steady state can be 
shown to be: F=50, /=300. Let us now linearize (8.18) around the steady state and 
attempt to find a value of the delay time r at which a Hopf bifurcation occurs. The 
Jacobian is: 

( • 

V 

1/20 

1/T 
(I 
(i 

0 
-1/T 
6/50 
0 

0 
0 

-1/50 

1/T 

-1/20X 
0 
0 

-\/r ) 

.19) 

The Routh-Hurwitz criterion can be used to determine the critical value of r for which 
(8.19) has a pair of pure imaginary roots. If you type this matrix into MatLab function 
Hopf.m (this is why it was called Hopf!), save it, and then run Routh_Hur\vitz.m, you will 
find that a Hopf bifurcation occurs when T— 10.74 ms and that the imaginary eigenvalues 
are A= ±0.0556i, while the remaining two eigenvalues have negative real parts. Thus, a 
Hopf bifurcation will produce a limit cycle with initial frequency 1000x0.0556/ 
(27r) = 8.85 Hz (the factor of 1000 converts from cycles/ms to cycles/s or Hz). To deter
mine the range of T values for which (8.18) has a limit cycle and to determine whether it is 
asymptotically stable or unstable, run FBdelay.m with values of r near 10.74. You will 
discover that the limit cycle is asymptotically stable for r > 10.74. 



Nonlinear oscillations 131 

This is a very important example, because it demonstrates that this simple neural 
feedback system cannot oscillate if the transmission delays are very short. If, however, the 
delays become long enough, limit cycle oscillations will occur. Whether these oscillations 
are desirable or dysfunctional depends on the role that the feedback circuit plays in the 
nervous system. 

8.6 Adaptation and perceptual reversals 

In Chapter 6 it was shown that spike rate adaptation in a short-term memory network 
(6.14) could eventually cause the network activity to shut off; thereby losing the infor
mation in short-term memory. Will there be a similar effect if adaptation is introduced 
into the two-neuron winner-take-all (WTA) network described by (6.18)? The network 
equations with adaptation variables Ai and A2, which operate by increasing the semi-
saturation constants a in (2.11), are: 

d£, 1 / 100[A) - 3.2F2 " 
Fi ±-d? T \ (120 + AI)2 + [KI-3.2E2\ 

dE2 _ 1 / 100[F2 - 3 . 2 F , ] ; 

d? " r V 2 (120±.4 2 ) : ±[F 2 -3 .2F 1 ] - + y (8.20) 

6-± = U-Ai+0Ei) 
dt rA 

^f = U-A2+0E2) dt rA 

where the small plus sign on the bottom right of the brackets indicates that the entire 
bracket evaluates to zero whenever the quantity within is <0. Let r = 20ms, and 
rA = 600 ms, thus again recognizing that adaptation is a much slower process that neural 
activation. Let K\ = K2 = 150 be the inputs for E\ and E2, and introduce a slight 
asymmetry in the initial conditions by setting Fi = 1, £2 = 0 , A\ =0,z\\d A2 = 0. If you 
execute MatLab script WTAadapt.m, with adaptation parameter 0= 1.5, you will find 
that the network oscillates as depicted in Fig. 8.11. Note that as Fi adapts, E2 is disin-
hibited to the point where it finally switches on, and E\ is then inhibited. This cycle repeats 
itself and generates a limit cycle oscillation. This adaptation driven oscillation has a 
period of about 3 s, even though neural responses have a 20 ms time constant. 

When a system has more than two dimensions, it is impossible to plot the entire state 
space or the isoclines, which are now intersecting surfaces rather than lines. We can, 
however, frequently gain insight into the dynamics by examining various two-dimensional 
projections of the state space. Given the four variables in (8.20), there are six pairs we might 
choose to plot. Examination of the various combinations reveals that useful information is 
obtained by plotting E\ versus A\ (or, equivalently, F2 versus A2). As shown in Fig. 8.12, 
this state space projection clearly reveals the closed limit cycle trajectory. 

This limit cycle is more complex than those examined so far. We already know from 
Chapter 6 that when there is no adaptation, the asymptotically stable steady states involve 
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Fig. 8.11 Limit cycle produced by neural adaptation in a WTA network (8.20). 
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Fig. 8.12 Two-dimensional projection of the four-dimensional state space of (8.20) onto the E\,A, plane. 
The limit cycle is clearly revealed in this projection. 

activity in one neuron and suppression of the other. Weak adaptation does not affect this 
scenario and therefore cannot produce a limit cycle. When the adaptation becomes suf
ficiently strong, the firing rate of the active F neuron adapts to the point where it disin-
hibits the second £ neuron, which then becomes active and suppresses the first cell, which 
is the mechanism for limit cycle genesis here. The Hopf theorem can be applied in this 
case, but the computation becomes rather complex. You are encouraged to experiment 
using the WTAadapt.m program. For example, try varying 0 in (8.20) to determine the 
values at which limit cycles arise and vanish (see Exercises). 

There are several well-known perceptual phenomena that are believed to result from 
adaptation in competitive neural networks. One phenomenon is the perceptual reversal of 
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Fig. 8.13 Three examples of perceptual oscillations: the Necker cube (top), binocular rivalry (center), and the 
Marroquin figure (bottom). The cube A oscillates between the two three-dimensional interpretations in B and 
C. If one eye views the horizontal bars in the middle, while the other views the verticals, binocular rivalry 
ensues. The Marroquin figure generates the percept of scintillating circles. 

ambiguous figures such as the Necker cube (Fig. 8.13, top). A second is binocular rivalry, 
which is produced by viewing vertical stripes with one eye and horizontal stripes with the 
other eye. One sees an alternation between horizontal and vertical stripes with a period of 
2-4 s (Fox and Herrmann, 1967). Binocular rivalry may be experienced by running the 
MatLab program BinocRivalry.m. If you view the colored bar pattern produced by the 
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program through red-green stereoscopic glasses (i.e. place green cellophane over one eye 
and red cellophane over the other), you should see quite dramatic perceptual alternations 
between horizontal and vertical bars. These perceptual reversals are believed to reflect 
adaptation of inhibitory circuits in the visual cortex (Blake, 1989). Finally, the Marroquin 
figure at the bottom of Fig. 8.13 produces a scintillation of circular shapes at various 
locations in the pattern, and these can be explained using a spatial network version of 
(8.20) (Wilson et al., 1999). 

These three perceptual alternations are by no means as precise as the limit cycle in 
Fig. 8.11. but this is doubtless due to the involvement of many more than just two neurons 
in the relevant networks and to the presence of physiological noise in the visual system. 
The important observation is that there are a variety of perceptual alternations that can 
be explained on the basis of limit cycles in competitive networks incorporating 
neural adaptation (Wilson et al., 1999). In addition, limit cycles based on neural adap
tation form a basis for lamprey swimming control (see Chapter 13). 

8.7 Exercises 

1. The following equations are a somewhat more complex version of (8.8) for describing 
action potential generation: 

— = -V3 +3V2 ± 0 . 1 2 5 - R + I 
dt 

f=-R + 5V2-l 
dt 

Plot the isoclines and analyze all of the equilibrium states for/ = 0. Based on this analysis, 
draw closed curves indicating all possible locations in the phase plane at which limit cycles 
might occur. You need not simulate these equations, as we will be discussing more 
sophisticated versions of them in Chapter 9. 

2. Consider the following pair of equations, which represent a somewhat different form 
of (8.8): 

R 

After showing that V = 0,R = 0 is an equilibrium point, prove the existence of a limit 
cycle as the Hopf parameter 0 passes through a critical value o. Determine the value of Q 
analytically, and estimate the frequency of the limit cycle that will emerge at that point. 
Using methods analogous to those in (8.16), prove that the nonlinear terms cause all 
trajectories to decay to the origin when 0 = a. Finally, simulate these equations for a value 
of 0 that produces a small amplitude limit cycle and compare the frequency of the 
simulation with your analytic result. 

dF 

~dt " 
dF 

~d7~ 
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3. Consider the FitzHugh-Nagumo equations in (8.8), which have many of the 
qualitative properties of the Hodgkin-Huxley equations. Using /mpul as the relevant 
parameter, prove that these equations undergo two Hopf bifurcations, and indicate 
whether each is subcritical or supercritical. Using your proof and Runge-Kutta simu
lations, produce a bifurcation diagram analogous to that in Fig. 8.9 that includes both 
bifurcations. (Hint: solve for Fat the bifurcations using the Jacobian in (8.11), then use 
this information to solve for /mput at each bifurcation.) 

4. The Wilson-Cowan (1972) oscillator originally incorporated a different mathematical 
form of the nonlinear firing rate function: the logistic function instead of the Naka-
Rushton function. To see that this other form of sigmoidal (i.e. S-shaped) nonlinearity 
does not change the general features of solutions, consider the following modification of 
(8.2): 

dF 1 ( 100 
F ± -d? 5 V 1 ± e x p ( - 0 . 1 ( 1 . 6 F - / ± / c - 4 0 ) ) 

d/ 1 ( 100 
/± d? 10 V 1 ±exp(-0.1(1.5F-40)) 

(Note that the connection strengths are identical to 82.). Conduct the following analysis 
of limit cycles in this system: (a) determine the stability characteristics of the steady state 
when K=0; (b) prove that there is a Hopf bifurcation near K= 10; and (c) simulate and 
plot results (along with a phase plane plot) for K= 15. 

5. Using WTAadapt.m determine the values of 0 (to the nearest 0.1) in (8.20) at which 
limit cycles arise and then vanish (you will find two values of 0). Draw the bifurcation 
diagram near the higher 0 value and indicate what type of bifurcation this appears to be. 

6. The following equations provide a much more accurate description of action potentials 
in the giant axon of the squid than do the FitzHugh-Nagumo equations: 

0 . 0 5 ^ = -{1.35 ± 3.67K± 2.5K2}(K- 0.55) - 2R(V + 0.92) ± / 
d? 
j p i 

— = — ( - F ± 1 . 1 F ± 0 . 8 2 ) 
d? rR 

7-R = 1.3 ms 

where the time constants are in ms and /is the input current, (a) Give a complete analysis 
of all steady states for / = 0. (b) Give a complete analysis of all steady states for / = 0.1. In 
this case plot the isoclines and prove that the system must have at least one asymptotically 
stable limit cycle, (c) Simulate these equations for 20 ms using input current / = 0.1 and 
plot V(t). For initial conditions, start with F(0) and R(0) at their resting values for the 
case where / = 0. Indicate what step size you have used to obtain an error estimate that is 
< 0.001, and indicate the actual error estimate you have obtained. 



9 Action potentials and limit cycles 

In the previous chapter we developed criteria for the existence of limit cycles in nonlinear 
dynamical systems, namely the Poincare-Bendixon theorem and the Hopf bifurcation 
theorem. As one example, we examined the FitzHugh-Nagumo equations, the simplest 
approximation to the dynamics of action potentials. However, these equations are not 
closely related to physiology, as they fail to include ionic currents and equilibrium 
potentials. 

We are now poised to study the dynamics of ionic currents underlying the generation of 
action potentials in the Hodgkin-Huxley equations, where it will be shown that a periodic 
spike train is in fact a limit cycle. Following a brief review of the concepts behind the 
Hodgkin-Huxley equations, we shall study a set of equations that are simple to analyze 
mathematically but that provide a remarkably accurate description of action potentials. 
Subsequent topics examine hysteresis in spike generation, a dynamical categorization 
of neuron types, and various nonlinear resonance phenomena, including stochastic 
resonance. 

9.1 Hodgkin-Huxley equations 

The Hodgkin-Huxley (1952) equations describe the change in membrane potential or 
voltage Fas a function of the sodium (/NJ, potassium (/K). leakage (/|cjk), and stimu
lating (/input) currents across the membrane as well as membrane capacitance C. The most 
general form of the Hodgkin-Huxley equations is: 

dF 
(- " j " = -'Na -IK- W ± /input (9.1) 

As each current obeys Ohm's law, the current / = g(V- E), where g is the electrical 
conductance (reciprocal of the resistance), Fis the voltage across the membrane, and £is 
the equilibrium potential of the ion in question computed from the Nernst equation 
(2.16). The capacitance C (in micro-Farads/cnr, uF/cnr) arises from the fact that the 
lipid bilayer of the axon membrane forms a thin insulating sheet that serves to store 
electrical charge in the same way as an electrical capacitor (cf. Hille, 1992; Johnston and 
Wu, 1995; Delcomyn, 1998). Hodgkin and Huxley discovered empirically that the con
ductances were not constant but rather were functions of the membrane potential V, and 
this voltage dependence is the key to understanding action potentials. Therefore, (9.1) was 
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rewritten as: 

dF , 
C - j j = -gn&mh( V - FNa) - gK« ,( F - £K) - gleak( F - £,eak) ± /input 

-(-/>; ± M ( F ) ) 

(9.2) 
( - / t ± / / ( F ) ) 

( - « ± A ( F ) ) 
d? T„(K) 

In the first equation, £NA. £K . and £ieak are the equilibrium potentials at which each of the 
three currents is balanced by ionic concentration differences across the membrane. Evi
dently, the Hodgkin-Huxley equations are a fourth order system of nonlinear differential 
equations. The additional variables m. It, and n represent the rates of Na conductance 
channel activation, Na channel inactivation, and K channel activation respectively. 
Nonlinearity results from the fact that the equilibrium values of these variables, M(V), 
H(V), and N(V) are all functions of the membrane potential V, as are the time constants 
T,„, Th, and T„. Explicit mathematical forms for all these functions may be found in 
Hodgkin and Huxley (1952), Cronin (1987), and Johnston and Wu (1995). 

The scientific content of the Hodgkin-Huxley equations comes from two sources. First 
is the observance of Ohm's law for the individual currents. The second is the hypothesis 
that the Na, K and leakage currents are all independent and therefore sum in (9.1). This 
hypothesis was tested by solving the mathematical model (9.2) that resulted (on a 
mechanical desk calculator!) and showing that it reproduced the experimentally observed 
shape and duration of the action potential in the squid giant axon. The mathematical 
forms chosen for the functions T„„ T/,, T„, M(V), H(V), and N(V), were biologically 
motivated curve fits to the data. Hodgkin and Huxley's (1952) work represents the 
first and perhaps most dramatic success of nonlinear dynamics in predicting neuro-
physiological data. 

The mathematical forms chosen by Hodgkin and Huxley for functions T,„, 77,, r„, M( V), 
H(V), and N(V) are all transcendental functions. Both this and the presence of four 
equations in (9.2) make the Hodgkin-Huxley equations difficult to analyze mathemat
ically. Fortunately, detailed study of these equations has led to several insightful sim
plifications. Rinzel (1985) noticed that r,„ is so small for all values of Kthat the variable m 
rapidly approaches its equilibrium value, M(V). As a good approximation, therefore, the 
second equation in (9.2) can be eliminated and m = M(V) substituted into the equation 
for dV/dt. Second, Rinzel noted that the equations for h and n were similar in time course 
and in their equilibrium values H(V) and N(V). In fact, an accurate approximation is 
obtained by setting h = 1 —n. What this means in ionic terms is that Na+ channel closing, 
h, occurs at the same rate but in the opposite direction to K+ channel opening, n. 
Fhis relationship permits one to eliminate the equation for h, thereby reducing (9.2) to a 
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two-dimension dynamical system. Under these assumptions, (9.2) assumes the form 
(Rinzel, 1985): 

C~ = -gN,M( V)\\ -R)(V- £Na) - gKR4( F - £K) - Sieak(V- £,eak) ± / 
d? 
dR 1 
d? rR(F) 

-R + G(V (9.3) 

T R ( F ) = 1 ± 5 exp 
- (F±60) ' 

552 

Fo emphasize the simplifications and changes of variables, R has been used to describe 
the K+ channel opening and Na" channel closing, which together constitute the recovery 
variable (hence the appellation R). The explicit expression for TR(V), the recovery 
time constant, has been included to indicate the general transcendental nature of these 
functions. 

Using the forms of H(V) and (7(F) derived from the original Hodgkin-Huxley 
equations as described above, let us examine the action potentials and the state space of 
the system. (Mathematical forms for M( V) and G{ F) are contained in the MatLab scripts 
MM.m and GG.m, but they are too complex to provide much analytical insight.) The 
script RinzelHH.m implements (9.3), and action potentials are plotted in Fig. 9.1 for 
/input = 10 uA. The state space for (9.3) is plotted on the left of Fig. 9.2. Note in particular 
that the dR/dt = 0 isocline is straight over most of its range, while the dV/dt isocline is 
approximately cubic, although it does not agree with the exact cubic shape assumed in the 
FitzHugh-Nagumo equations (8.8). Changes in the spike rate and isocline shapes can be 
explored by running RinzelHH.m for different values of the input current. You can also 
estimate the threshold current necessary for spike generation: it lies in the range 
0 < /input < 10. 
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Fig. 9.1 Action potentials generated by (9.3), the Rinzel (1985) approximation to the Hodgkin-Huxley 
(1952) equations. In this instance /lllpll, = lOpA, and the resultant spike rate is 250Hz. 
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Fig. 9.2 Phase planes for (9.3) on left and (9.7) on right. For both equations the primary effect of increasing 
Anpuiist0 shift 'he lower left lobe of the dl'/d/ isocline (solid curves) upwards as shown by the vertical arrows. 
Spike height (horizontal double-headed arrows) is primarily determined by the distance between the 
equilibrium point on the dRidt isocline (dashed) and the right branch of the dV/dl isocline. 

9.2 Essential dynamics of the Hodgkin-Huxley equations 

The two-dimensional Rinzel approximation to the Hodgkin-Huxley equations in (9.3) 
can be simplified still further to reveal the essential dynamical principles underlying action 
potential generation. It is evident from the phase plane diagram in Fig. 9.2 (left) that the 
dV/dt isocline is roughly cubic in shape, while the dR/dt isocline is linear over most of its 
range. These observations were exploited by FitzHugh (1961) in developing the simplified 
FitzHugh-Nagumo equations discussed in the previous chapter. In the interests of 
mathematical simplicity, however, the FitzHugh-Nagumo equations ignored most 
physiological aspects of the Hodgkin-Huxley equations, such as adherence to Ohm's law 
and explicit reference to the Na+ and K+ equilibrium potentials. Let us develop a more 
accurate approximation to the Hodgkin-Huxley equations that rectifies the short
comings of the FitzHugh-Nagumo equations while retaining their mathematical tract-
ability. To maintain biophysical significance. Ohm's law and the dependence on Na+ and 
K+ equilibrium potentials must be made explicit. This approach, which exposes the 
biological significance of the isoclines, leads to equations of the form: 

d? 
dR 
~d7 TR 

£Na) 

R + G(V)) 

R(V-EK)+I 
(9.4) 

These equations have the same form as (9.3), namely an equation for d V/dt that is the sum 
of Na+ and K+ currents plus the stimulating current /, and a second equation for the 
recovery variable R. (The passive leakage current in (9.3), which plays no role in spike 
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generation, has been absorbed into the Na+ current for convenience.) For mathematical 
tractability, the first equation can be restricted to a cubic in V (based on isocline shapes 
discussed above), so g^&(V) must be restricted to a quadratic polynomial. Similarly, 
G( V) can only be quadratic if the term R( V - £K) in the first equation is to remain no 
higher than cubic. Given these constraints, let us examine the isoclines of (9.4), which are: 

R=-g^(V)(V-E^+I f o r dV=Q 

(9.5) 

- £ N ; , ( F ) ( F - £ N a ) ± / 
(V-EK) 

dR 
G(V) for — = 0 

d? 

for 
dV 

~dl 

Setting / = 0 for the moment, it is evident from the first isocline equation that: 

R — 0 when V = £Na 

R = oo when V = £^ 

These points are marked on the right-hand phase plane in Fig. 9.2. Fhus, simply writing 
the dynamics in a form obeying Ohm's law leads to a dV/dt = 0 isocline with a natural 
biophysical interpretation in terms of £N 3 and £«! 

A fit of (9.5) to the isoclines on the left of Fig. 9.2 leads to the following differential 
equations: 

dV 
C — = -(17.81 ± 47.71 V+ 32.63V2)(V- 0.55) - 26.0R(V + 0.92) ± / 

dR 1 (9 '7) 

= -(-R+ 135V+ 1.03) 
d? T 

where the capacitance C = 0.8pF/cnr and TR = 1.9 ms. In generating these equations, 
the voltages were divided by 100 to keep the parameter values near unity. Thus, the 
equilibrium potentials are £N.I = 0.55 (or + 55 mV), and £^ = —0.92 (or —92 mV), which 
are the same values that were used in (9.3). Thus. (9.7) expresses potential in deci-volts, 
and the input current / is in uA/100. For all comparisons with Hodgkin-Huxley results 
the solutions of (9.7) will therefore be multiplied by 100. 

Having derived these equations, let us first determine whether they produce spikes that 
are accurate reflections of the Hodgkin-Huxley solutions. Figure 9.3 compares spike 
shapes at two different spike frequencies and also plots spike rates for both (9.7) and the 
full Hodgkin-Huxley formulation over the entire physiological range of input currents/. 
Equation (9.7) produces a good approximation to action potential shape, the correlation 
between the two spike shapes being > 0.96, and it also reproduces the reduction in spike 
amplitude with increasing spike rate observed in the Hodgkin-Huxley equations. The 
reader can explore the dependence of spike rate and spike height on input current /by 
running MatLab script HHWeqn.m and varying input current over the range 0 < / < 2.0. 
Note that the numerical values of /are also 100 times smaller than those for the Hodgkin-
Huxley equations, so the threshold value is in the range 0.0 < / < 0.090. Figure 9.2 also 
shows that the dV/dt isocline in (9.5) deforms primarily on the lower left side as /is 
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Fig. 9.3 Comparison of spike trains generated by (9.7) and the Hodgkin-Huxley equations (9.2). (A) Spike 
trains at 200 and 350Hz for (9.7) (solid lines) and Hodgkin-Huxley (dashed lines). In addition to the 
similarity in shape, both equations produce a reduction in spike amplitude with increasing frequency. (B) Spike 
rate as a function of input current for Hodgkin-Huxley (dashed line) and (9.7) (solid line). Spike threshold is 
indicated by the arrow. 

changed from threshold to 10 times threshold. Finally, Fig. 9.2 also shows that the limit 
cycles for (9.3) and (9.7) are quite similar in shape when plotted in state space. Fhus, (9.7) 
provides a reasonably accurate approximation to the Hodgkin-Huxley equations given 
the simplifying assumptions made by Rinzel (1985) to obtain (9.3). 

Let us now see how easy the analysis of (9.7) can be. The equilibrium state is given by the 
simultaneous solution of (9.5), which becomes, with parameters from (9.7): 

-40.7881-' z3 81.079F2 - 63.302F± 1.25/- 18.553 = 0 (9.8) 
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This can either be solved for specific values of / using the roots function in MatLab. 
For example. / = 0 yields only one real root: V = -0.70, or —70 mV, the same as for the 
Hodgkin-Huxley simulations in Fig. 9.3, and R = 0.088 at rest. The Jacobian matrix for 
(9.7) is: 

-122.36V2 - 118.28 V 
0.71053 

22.937 -32.5 V - 29.9 
-0.52632 

(9.9) 

where the equilibrium equation for R has been used to eliminate it from the matrix. 
Equations (9.8) and (9.9) can now be used to determine the stability of the equilibrium 
point for any value of/in the usual way. For example, if/ = 0.25. V = —0.67 from (9.8), 
and the eigenvalues of the A matrix are A = 0.53 ± 2.18i, so the steady state is an unstable 
spiral point. The Poincare-Bendixon Theorem can now be used to prove the existence of a 
limit cycle using a construction similar to that employed for the FitzHugh-Nagumo 
equation (see Exercise 1). 

9.3 Hysteresis in the squid axon 

One of the most striking aspects of dynamical modeling in neuroscience is the fact that 
nonlinear equations frequently predict novel phenomena that the creators of the equa
tions had never imagined. As a case in point. Hodgkin and Huxley created their equations 
in 1952, yet many years elapsed before it was shown that the equations predicted a novel 
hysteresis effect that had never been observed (Cooley et ah, 1965; Rinzel, 1978; Best, 
1979). Subsequently, Guttman, Lewis, and Rinzel (1980) tested this prediction and 
showed that hysteresis actually occurred in the squid axon. Figure 9.4 shows the results of 
their experiment. A squid axon was stimulated with a current / that began at 0 and 
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Fig. 9.4 Hysteresis in the giant axon of the squid (reproduced with permission. Guttman et al., 1980). In 
response to a triangular current ramp, spiking activity begins at a high current at A but then continues to the 
much lower current at B, thus demonstrating hysteresis. 
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Fig. 9.5 Hysteresis produced by (9.7) in response to a triangular current ramp. Compare with data in 
Fig. 9.4. 

increased linearly up to a maximum value. Following this it decreased linearly back to its 
original value. This triangular variation of / is indicated by the upper trace in Fig. 9.4. The 
spikes produced by this stimulation are plotted in the lower trace, where the solid black 
area indicates that the spike frequency was too high for the individual spikes to be resolved 
on the oscilloscope (time divisions are at 50 ms intervals). The striking observation is that 
the axon did not commence spiking until the stimulating current was about halfway to its 
maximum value, but once spiking had begun, it continued almost all the way back down 
to zero! This is an example of neural hysteresis in a single axon! 

This hysteresis experiment can be simulated using (9.7) by varying the input current /as 
a triangular function of time. If you run the MatLab program HHWhysteresis.m and 
choose a slow ramp and / = 0.2, you will obtain the result plotted in Fig. 9.5, which agrees 
well with the data in Fig. 9.4. You should try experimenting with other values of /, which 
defines the maximum value of the triangular current variation, to see how it affects the 
hysteresis. 

Why does eqn (9.7) (or Hodgkin-Huxley) predict hysteresis in the squid axon? Let us 
apply the Hopf bifurcation theorem to (9.7) using the Jacobian in (9.9). Because the 
characteristic equation will only be quadratic in V, we can easily solve for the value of Fat 
which the eigenvalues become pure imaginary, which occurs at V — -0.688. Now this 
value of Fmay be substituted into (9.8) to find the current that will produce this steady 
state. The result is / = 0.0777, which is thus the value of the current at which a Hopf 
bifurcation occurs. Therefore, one might guess that a slightly larger current, such as 
/ = 0.078, would generate a low amplitude limit cycle in (9.7). If you try this by running 
HHWeqn.m, you will indeed see a limit cycle, but it will exhibit the full spike amplitude. 
This means that / = 0.0777 is actually a subcritical or hard Hopf bifurcation: (9.7) 
must have an unstable limit cycle for / < 0.0777 (refer back to Fig. 8.9). In the real 
world, unstable limit cycles can never be observed (due to their instability); only the 
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Fig. 9.6 Bifurcation diagram for (9.7) as a function of input current /. Over the range A-B an asymptotically 
stable limit cycle (gray region) and an unstable limit cycle (hatched region) coexist. The steady state becomes 
unstable at B in a subcritical or hard Hopf bifurcation. 

consequences of their presence can be seen. In two-dimensional dynamical systems, 
however, we can 'observe' an unstable limit cycle by making time flow backwards (would 
that this were also possible in the real world sometimes!). Try running HHWeqn.m by 
making both time constants Tau and TauR negative in the script. Change the second 
initial condition to X(2, l) = 0.2, and run the program with / = 0.068. You will find that 
there is now a small, asymptotically stable limit cycle surrounding the equilibrium point. 
Making time run backwards like this switches the stability of all limit cycles in the system, 
so the limit cycle that generates spikes is now unstable. (This is why the initial conditions 
were altered to be inside this second unstable cycle.) Note that making time run back
wards in simulations does not work in higher dimensional systems, because it reverses the 
signs of all eigenvalues. 

The situation may be clarified with a bifurcation diagram for (9.7). This is plotted in 
Fig. 9.6 where the / range over which both the asymptotically stable (gray) and the 
unstable (hatched) limit cycle exist is depicted. When the current /is changed very slowly 
from its resting value, the steady state remains asymptotically stable, and spikes will not 
be triggered until point B is reached. Beyond B spiking will continue until / finally drops 
below point A. Below A the asymptotically stable limit cycle vanishes, and the spike train 
stops. Fhis is exactly what is seen in Fig. 9.5 and in the experimental squid axon data in 
Fig. 9.4. It was through such a mathematical analysis of the Hodgkin-Huxley equations 
that Rinzel (1978) predicted this hysteresis and the experimental conditions for observing 
it. A second equally fascinating consequence of the bifurcation diagram in Fig. 9.6 is the 
prediction that a depolarizing pulse at just the right time during a spike train should 
permanently extinguish it. This, too, was predicted by Rinzel (1978) and Best (1979) and 
experimentally demonstrated by Guttman et al. (1980). The phenomenon is explored in 
the Exercises. 



Action potentials and limit cycles 145 

412 Hz 
43 ms 

600 Hz 
Period = 1.67 ms 

i l l J A u ., 
10 

Time (ms) 

20 

Fig. 9.7 Interspike interval histograms of auditory nerve axons in the monkey in response to pure tones of 
4l2Hz (top) and 600Hz (bottom). Data from Rose el al. (1967) (reproduced with permission). The neuron 
shows a higher probability of firing at the same phase of each stimulus period. 

9.4 Noisy neurons: improving auditory thresholds 

All neural systems contain some physiological noise due to fluctuations in ionic con
centrations, etc. Noise is normally regarded as being deleterious to the operation of a 
system and as something to be avoided or minimized. This is always true in linear systems, 
but there are circumstances in which noise can actually improve the performance of a 
nonlinear system. Let us examine one such example that has been explored by Longtin 
(1993, 1995). 

Consider the data in Fig. 9.7, which were recorded from an auditory nerve fiber in a 
squirrel monkey (Rose et al., 1967). This is an interspike interval (ISI) histogram in which 
the data refer to the intervals between successive spikes fired by a neuron in response to 
sinusoidal stimulation at 412 or 600 Hz. The stimulus period is listed in each plot, and the 
dots on the abscissa indicate integral multiples of that period. It is evident from the graph 
that the neuron did not fire during each period of the stimulus. Rather, firing was 
probabilistic: the first peak in the histogram indicates the frequency with which two spikes 
occurred one period apart; the second peak is the frequency with which the neuron missed 
one period so that the spikes occurred two periods apart, etc. It is obvious from the 
records that this neuron can miss five or more periods between action potentials. Note 
also that successive peaks decrease in amplitude approximately exponentially, which 
suggests a Poisson process. 

How might this erratic neural behavior be explained? More interestingly, could there be 
any functional advantage to this noisy behavior? Both questions can be answered by 
simulating this experiment on the neuron described by (9.7). Suppose that the stimulating 
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Fig. 9.8 Interspike interval histogram for (9.7) in response to a subthreshold 208 Hz sinusoidal input in the 
presence of Gaussian noise. Clustering of responses at integral multiples of the stimulus period is indicative of 
stochastic resonance (compare with Fig. 9.7). 

current / to this neuron is a sinusoidal function of time with a frequency of 208 Hz. If you 
run the MatLab script HHnoise.m without noise (set SDnoise = 0), you will find that the 
threshold stimulus amplitude to generate a train of spikes is about 0.041. Reducing the 
amplitude to 0.025, about 60% of the threshold value, the equations generate only a weak 
subthreshold oscillation in V, and no spikes are produced. Now suppose some physio
logical noise is added to the input current. Let us assume the noise is Gaussian and 
has zero mean and standard deviation SDnoise = 0.12. Now the equations generate 
approximately 60 spikes/s. Figure 9.8 shows the ISI histogram for eqn (9.7) under these 
conditions, and it clearly reflects all of the major characteristics of the auditory neuron in 
Fig. 9.7. In particular, successive histogram peaks decrease in size and are centered near 
integral multiples of the 4.81 ms stimulus period. 

Fhis simulation makes it easy to understand the effects of noise on the neural response: 
the noise added to the stimulus increases the probability of firing predominantly when the 
stimulus sinusoid is near its peak phase. However, the noise alone has a low probability of 
generating spikes in the absence of the sinusoidal stimulus: on average it generates 4 
spikes/s at random intervals. Fhis example demonstrates that when there is a threshold 
for spike generation, subthreshold noise can increase the sensitivity to periodic sensory 
stimulation. In this example, the sensory threshold is improved (i.e. decreased) by about 
40% through addition of noise. Such noise-induced enhancements of sensitivity are 
known as stochastic resonance (see Douglas et al., 1993). Thus, noise can improve sensory 
performance via stochastic resonance because of neural thresholds. The price paid for 
stochastic resonance is a noisy or stochastic output, but the nature of the stimulus is 
encoded into the interspike intervals in the response. 

Finally, this simulation provides an explanation for the Poisson character of the ISI 
histogram. Referring to Fig. 9.8, assume that the probability of firing a spike during any 
one stimulus period is p. That means that the ratio between the first and second peak 
amplitude should be about (1 - p), which is the probability of not having fired in the 
previous interval. If we let (1 — /J) = 0.3 and take the first peak height as about 60, 
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successive peaks should therefore have heights of 18.0, 5.4, and 1.62. Figure 9.8 shows that 
this is about right, although there are too few spikes in this simulation (about a thousand) 
to accurately delineate the higher order peaks. 

9.5 Human and mammalian cortical neurons 

Equation (9.7) provides an accurate and tractable description of the Hodgkin-Huxley 
equations for action potentials in the squid axon. However, the squid axon is unusual in 
having only one Na+ and one K + current. As a consequence, the squid axon cannot fire at 
rates below about 175 spikes/s and produces only a modest increase in spike rate with 
increasing input current (see Fig. 9.3). The vast majority of neurons in other animals also 
possess a rapid, transient K+ current that permits the cell to fire at very low spike rates 
with a long latency to the first spike when the input current is low (Rogawski, 1985). This 
current, known as /A, was first characterized and added to the Hodgkin-Huxley model by 
Connor, Walter, and McKown (1977). /A currents are found in a wide range of neurons, 
including human and mammalian neocortical neurons (Avoli and Williamson, 1996; 
Gutnick and Crill, 1995). Because of its ubiquity and also because neurons with an I\ 
current exhibit a mathematically distinctive bifurcation from the resting to the spike 
generation state, let us extend our action potential model to incorporate it. 

As with the Na* and K+ currents in the squid axon, Connor et al. (1977) incorporated a 
mathematically complex, transcendental description of the I\ current. More recently. 
Rose and Hindmarsh (1989) demonstrated that many effects of the /A current could be 
approximated by making the equation for the recovery variable R quadratic. Let us 
therefore examine the dynamical consequences of a quadratic dR/dt equation. The 
equations are: 

- - = -{17.81 ±47.58F±33.8F 2}(F-0.48) - 26 R( V + 0.95) +1 

~ = —(-R+ 1.29F±0.79±0.33(F±0.38) :) ( 9 ' 1 0 ) 

d? rR 

TR = 5.6 ms 

The capacitance C = LOuF/cm2 and therefore has not been written explicitly. These 
equations have parameter values chosen to provide a good approximation to the action 
potentials produced by human neocortical neurons (Wilson, 1999). (Human neurons 
have been studied intracellularly in tissue, usually from the temporal lobe, removed 
during epilepsy surgery.) Note that the dR/dt equation is written as the sum of a linear and 
a quadratic voltage term, which may be interpreted qualitatively as the normal /K and the 
transient /A current contributions. 

Figure 9.9 shows the state space for (A) / = 0 and (B) / = 0.5 nA from MatLab script 
HumanNeuron.m. For / = 0 there are three steady states at a, b and c. The resting state at 
a, where F = —0.75 (-75 mV), is an asymptotically stable node, while b and c are an 
unstable saddle point and an unstable spiral point respectively. Threshold is reached for 
(9.10) when the stable node (a) and unstable saddle point (b) coalesce and vanish at a 
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Fig. 9.9 Phase planes for (9.10) for /=0(A) and / = 0.5 (B). In A the isoclines intersect in three steady states: 
an asymptotically stable node (a), a saddle point (b), and an unstable spiral point (c). In B the node and 
saddle point have vanished at a saddle-node bifurcation, resulting in a limit cycle around spiral point c. C 
shows the bifurcation diagram for (9.10) as a function of /. 

bifurcation, which is therefore very different from a Hopf bifurcation. This leaves only the 
unstable spiral point c, around which a limit cycle emerges. This is evident in the bifur
cation diagram in Fig. 9.9C, where limit cycles surround the single unstable spiral point 
for / >A, while three steady states, including the resting state at the stable node, exist 
between A and B. Because a saddle point and a node coalesce and vanish at A. this is called 
a saddle-node bifurcation, and the limit cycle that emerges in such cases will have a finite 
amplitude at its inception. This is very different from a Hopf bifurcation where the limit 
cycle must originate with infinitesimal amplitude when a single steady state changes from 
stable to unstable. Not all saddle-node bifurcations produce limit cycles, and simulations 
are generally required to determine whether or not a limit cycle does occur. 

Figure 9.10 illustrates the spike train produced by eqn (9.10) for / = 0.22 nA. Note the 
two characteristic changes produced by the simulated /A current: a long latency to the first 
spike (about 200 ms), and a much lower firing rate (about 5.0 spikes/s) than that produced 
by either (9.3) or (9.7) and shown in Fig. 9.3. In fact, just above threshold (/ = 0.2149 nA), 
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Fig. 9.10 Spike train from (9.10) for / = 0.22nA. Note long latency and low spike rate compared to Fig. 9.3. 

(9.10) produces latencies of more than 1 s and spike rates below 1 spike/s! Both the lower 
spike rates and the long latencies result from the fact that the dR/dt = 0 isocline lies very 
close to the limit cycle in the subthreshold region marked 'sub' in Fig. 9.9B. This means 
that dR/dt will be very small in this subthreshold region, so the interval between spikes is 
greatly increased relative to the case where the dR/dt isocline is far away (compare with 
Fig. 9.2). The greatly reduced spike rates produced by /A have the functional significance 
of extending spike rate coding over a much greater dynamic range (Connor et al., 1977; 
Rogawski, 1985). 

Neurons that can be stimulated to fire at arbitrarily low frequency due to saddle-node 
bifurcations are termed Class I neurons, while those that can only begin firing at a rela
tively high frequency resulting from a subcritical Hopf bifurcation are called Class II 
neurons (Ermentrout, 1998). Almost all mammalian neurons are Class I, while the squid 
axon is of Class II. 

The cortex of humans and other mammals is currently thought to contain four major 
types of neurons, each of which is characterized by its distinctive nonlinear dynamical 
properties. Spike shapes for two of these cell types, regular-spiking (RS) and fast-spiking 
(FS), are plotted in Fig. 9.11C (McCormick et al., 1985). Action potentials of RS neurons 
have a rapid rise but a much slower decay phase. FS cells, on the other hand, have a similar 
rise but a much more rapid decay phase than regular-spiking cells, and in consequence, the 
width of the spikes is significantly narrower. In humans, spike widths at half amplitude 
average 0.95 ms for RS cells and 0.60 ms for FS cells (Wilson, 1999). The model in 
eqn (9.10) has already been optimized to approximate the size and shape of RS neuron 
action potentials obtained from human neocortical neurons, and a comparison between 
model results and human data (Foehringe? al., 1991) is shown in Fig. 9.11A. The model 
provides an accurate quantitative fit to the spike shape and, with the addition of a slow 
potential to be discussed in the next chapter, to the spike rates as well. Equation (9.10) can 
also provide an excellent quantitative approximation to the action potentials of FS cells if 
just one parameter is changed: the recovery time constant must be reduced to TR = 2.1 ms. 
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Fig. 9.11 Regular-spiking (RS) and fast-spiking (FS) neurons. (A) Spike shape of a human RS neuron (data 
from Foehring et ai, 1991) compared to spike from (9.10). (B) RS and FS spike shapes produced by changing 
rR in (9.10) from 5.6ms (RS) to 2.1 ms (FS). (C) FS and RS spike shapes recorded from neocortical neurons 
(reproduced with permission, McCormick et al.. 1985). 

This speed-up of the recovery phase by a factor of 2.7 produces the FS action potential 
plotted in Fig. 9.1 IB. You can verify this by changing TauR in the MatLab script, 
HumanNeuron.m. Note that the FS spike is not only narrower but also slightly reduced in 
height relative to the RS cell, and this is also evident in the data in Fig. 9.11C. This is a 
dynamical consequence of the faster R variable in the equations. 

9.6 Subharmonic resonance and phase shifts 

When the stimulus to a linear system is periodic with frequency u> the response is always 
periodic at the same frequency. In nonlinear systems, however, limit cycles can respond at 
subharmonics of the stimulus frequency, a phenomenon known as subharmonic reson
ance. Cochlear neurons in the auditory system exhibit subharmonic resonance in 
response to pure tones of appropriate frequencies (Kiang et al., 1965). The phenomenon 
of subharmonic resonance may be illustrated by the response of (9.7) to the periodic 
stimulus / = ,4 sin(27rw?). If you run the MatLab script HHnoise.m with A =0.25, 
SDnoise = 0 (noise is not relevant here) and u; = 200 Hz, the result at the top of Fig. 9.12 
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Fig. 9.12 Subharmonic resonance exhibited by (9.7) in response to sinusoidal stimulation at 200, 400, and 
700 Hz. 

will result. These conditions generate one spike locked to the rising phase of each stimulus 
cycle, hardly a surprising result. When the frequency is increased to u = 400 Hz, however, 
the more unusual result in the middle panel is obtained. Now the neuron only generates an 
action potential during each second cycle of the stimulus oscillation. This is the phe
nomenon of subharmonic resonance, also called frequency division. Strikingly, the spike 
rate is the same for 200 Hz and 400 Hz stimuli! Finally, the bottom panel shows that at 
700 Hz a spike is only generated during each third stimulus cycle, a further example of 
subharmonic resonance. Experimentation with other stimulus values using HHnoise.m 
will yield interesting and sometimes very irregular results, some of which are chaotic (see 
Chapter 11). 

Why does subharmonic resonance occur in neurons? The physiological answer is that 
when stimuli oscillate at sufficiently high rates, one or more cycles will occur during the 
absolute refractory period following the previous spike when no additional spikes can be 
generated. A mathematical interpretation of this may be gained by considering a simpler 
problem: the effect of a brief current pulse applied at various times during a spike train. 
The script PhaseShift.m applies a constant depolarizing current / = 0.15 to eqn (9.7) and 
allows one to specify both the amplitude and initiation time of a 0.1 ms pulse. If no pulse is 
applied (pulse amplitude of zero), the equations produce a spike train with a period of 
5.1 ms, as shown by the solid line in Fig. 9.13. If a pulse with amplitude = 1.0 is applied at 
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Fig. 9.13 Phase shift produced by a brief depolarizing pulse (rectangle) delivered at 9.0ms to (9.7). The pulse 
causes a phase advance (dashed curve) in the ongoing spike train (solid curve). 

Fig. 9.14 Phase plane of (9.7) with a depolarizing pulse that produces the distortion of the limit cycle 
indicated. If the same pulse is delivered at the phase shown by the arrow, the trajectory is shifted across the 
bottom lobe of the dVjdt isocline, and an early spike is triggered. 

? = 9.0 ms, however, a significant phase shift occurs: the next spike occurs much earlier 
than in the absence of the pulse (dashed line in Fig. 9.13). An earlier pulse with same 
amplitude triggered at 8.0 ms produces almost no phase shift. Experimentation with 
PhaseShift.m will reveal that pulses delivered within about 1.0 ms after completion of a 
spike have almost no effect. 

Further understanding of these phase shifts can be gained by examination of the state 
space depicted in Fig. 9.14. The labeled pulse shows the deformation of the limit cycle 
trajectory produced by a 0.1 ms pulse delivered at a phase that produces almost no phase 
shift. The effect of the pulse is to shift the trajectory almost parallel to the Faxis by a short 
distance. As this causes the trajectory to cross the dV/dt = 0 isocline to a region where 
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dV/dt < 0, the trajectory rapidly decays back to the original limit cycle following the 
pulse. If the same pulse were delivered at the slightly later phase indicated by the hori
zontal arrow, however, it would push the trajectory entirely across the bottom lobe of the 
dV/dt = 0 isocline to a region where dV/dt > 0, and the next spike would be triggered 
early. Thus, spikes are triggered only at those phases where the pulse causes the trajectory 
to jump across the bottom lobe of the d V/dt isocline. The refractory period is just the 
phase range where stimuli are not sufficiently strong to produce a large enough jump in 
the trajectory. These observations also provide an explanation for subharmonic reson
ance. A high-frequency sine wave stimulus may be regarded as similar to a periodic train 
of pulses. When the stimulus frequency is too high, one or more pulses will occur within 
the phase range after each spike where spike triggering cannot occur. Other pulses, 
however, may be expected to occur at phases where they trigger an early spike. The 
combination of these two factors can cause both synchronization and subharmonic 
resonance. 

9.7 Morris-Leear equations 

In addition to eqns (9.3), (9.7), and (9.10), a number of additional two-equation models 
for action potential generation have been developed, including those by Hindmarsh and 
Rose (1982), Kepler et al. (1992), and Morris and Lecar (1981). Due to an excellent 
analysis of the Morris-Lecar equations by Rinzel and Ermentrout (1989), these equations 
have become popular among neural theorists. Accordingly, I shall present them briefly 
here and relegate an exploration of their properties to the Exercises. The normalized or 
dimensionless form of these equations presented here is obtained by dividing all voltages 
by the equilibrium potential for the excitatory ion (Ca2+ in the original model or Na+ 

when applied to squid or cortical neurons) and scaling time appropriately (Rinzel and 
Ermentrout, 1989). The resulting Morris-Lecar equations are: 

-_" = -g(V)(V - 1 .0) -2 /v(F+0.7) -0 .5(F+0.5) + / 

d * °-2>-R + G(V)) 
dt TR(V) 

1 
g(-V^ l+exp(-(K+0.01)/0.075) ( 9 ' U ) 

G(V) 
1 +exp(- (F-0 .1) /0 .07) 

r R ( F ) = c o s h ( ( F - 0 . 1 ) / 0 . 1 4 ) 

The first two equations have the same form as (9.4) except for the explicit addition of a 
leakage conductance term, -0.5(K+ 0.5). The transcendental expressions forg(F) and 
G(V) are logistic functions, which are just scaled and shifted hyperbolic tangents. Finally, 
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the time constant rR varies with V, being smallest when V = 0.1. The Morris-Lecar 
equations are implemented in MatLab script Morris_Lecar.m, and their properties are 
explored in the Exercises. The dynamical behavior of (9.11) with the constants given is 
very similar to (9.10). 

9.8 Exercises 

1. Use the Poincare-Bendixon theorem to prove the existence of limit cycles for eqn (9.7) 
with / = 0.5. Determine the stability of the steady state and then construct an appropriate 
closed curve in the phase plane through which all trajectories must pass to complete the 
proof. Show an accurate graph of your construction. 

2. When the K* concentration outside a neuron gets too high, the equilibrium potential 
£k becomes less negative. Prove that the resting state for / = 0 of eqn (9.7) can become 
unstable under these conditions for a range of Eft, values. (Note that £K = —0.92 in the 
equation; you must replace this with a parameter.) Simulate this situation to show that 
spike trains are generated. This is one possible mechanism for the inception of neural 
activity in visual cortex during migraine auras. What happens if £K increases even more? 

3. Prove the existence of a limit cycle for eqn (9.10) with / = 0.2. You should use the 
Poincare-Bendixon approach. This case is a bit more complex than Exercise 1. 

4. Determine the value of / for which eqn (9.10) exhibits a Hopf bifurcation. Is this a 
supercritical or a subcritical bifurcation? 

5. The bifurcation diagram in Fig. 9.6 shows the presence of an unstable limit cycle 
for eqn (9.7) when / = 0.068. To explore further consequences of this, use program 
PhaseShift.m with ConstStim = 0.068 (it is 0.15 in the program). First verify that a pulse 
with amplitude = 1.0 presented at ? = 4.0 ms, will terminate the spike train. You have just 
shut off all neural activity with a depolarizing pulse! Now vary the amplitude and timing 
of your pulse to estimate the range over which termination rather than phase shifting 
occurs. Also find a time and pulse strength at which a hyperpolarizing pulse (i.e. a pulse of 
negative amplitude) will terminate the spike train. Fo plot the unstable limit cycle in the 
phase plane, modify the script to make time run backwards by making the two time 
constants (Tau and TauR) negative. This will make the unstable limit cycle asymptot
ically stable. Also change the initial conditions so R(0) = 0.25, which falls within the 
domain of attraction of this limit cycle. 

6. You might have noticed that eqn (9.3) has a factor of (1 - R) in the Na+ current to 
represent channel inactivation. Equation (9.7), however, does not contain this term, so it 
strictly represents a neuron in which Na* currents never inactivate. The following 
equations describe a neuron containing the (1 - R) term: 

0.8 — = -(31.6 + 85.3 V+ 58.0 F :)(l - R)( V - 0.55) - \0R(V + 0.92) + I 

™ = ±-(-R + 2.2V+U5) 
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Give a complete analysis of these equations, including the resting state and all bifurcations 
produced by varying /. Be sure to indicate the nature of each bifurcation. Simulate the 
equations for several appropriate values of / and use this to sketch the bifurcation dia
gram for the system. 

7. Give a complete analysis of the Morris-Lecar (1981) equations in (9.11). First deter
mine the effects of voltage dependence of rR using Morris_Lecar.m. In particular, com
pare spikes with the voltage dependence in (9.1 1) with those produced when TR = 0.5, i.e. 
constant. Use / = 0.09 as the stimulating current. For the remaining analysis set TR =0.5 
for simplicity. Find and analyze the stability of all steady states for / = 0 (this will require 
the MatLab function fzero, see Appendix). What is the threshold value of/, and what type 
of bifurcation occurs at threshold? 

8. Just as the Morris-Lecar equations in (9.11) have been normalized, so (9.10) describing 
a neocortical neuron can also be simplified to reveal its canonical (i.e. essential) dynamical 
structure. Consider the following equations, which obey Ohm's law with normalized 
equilibrium potentials of 1.0 for Na+ and —1/5 for K+: 

(V-l)-R\V + j\+I 

These equations have been implemented in the script CanonicalNeuron.m. Give a com
plete dynamical analysis of these equations, finding all steady states and their stability 
when / = 0. Determine the value of / at the threshold for spike generation, and indicate 
the type of bifurcation that occurs at threshold. Now reduce the time constant of the R 
equation from 5 to 1.4. What happens if the equations are simulated with 1=0 (i.e. no 
external input) and initial conditions V = 0.4, R = 0.3? Why? 
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10 Neural adaptation and bursting 

We have now explored the nonlinear dynamics of the Hodgkin-Huxley equations and 
seen how the balance between rapid depolarizing and slower hyperpolarizing currents 
produces limit cycles and action potentials. Furthermore, it has been shown that an 
additional current /A, has the effect of greatly increasing the dynamic range of mam
malian neurons by causing firing to begin at a rate of less than 1.0 Hz rather than a rate 
close to 200 Hz characteristic of Hodgkin-Huxley neurons. These two modes of spike 
initiation result from different underlying dynamics characterizing the bifurcations 
leading to repetitive firing: hard Hopf bifurcations in the case of Hodgkin-Huxley or 
Class II neurons, and a saddle-node bifurcation in the case of mammalian or Class I 
neurons. These are only the basics of single neuron dynamics, however, as many other 
currents have been identified in neurons from a wide range of species. Mammalian and 
human neocortical neurons, for example, are currently known to incorporate at least 12 
ion currents, each of which has a somewhat different effect on action potential production 
(Gutnickand Crill, 1995). The detailed biophysics of these currents will not be developed 
here, as excellent treatments may be found elsewhere (Hille, 1992; Johnston and Wu, 
1995). Rather, we shall examine the simplest dynamical models that can explain two 
rather complex neural phenomena: spike rate adaptation and bursting. This will require 
incorporation of one or two additional ionic currents into the basic models from the last 
chapter, each described by an additional differential equation. This will ultimately lead to 
a mathematical taxonomy of single-neuron dynamics as currently understood. 

10.1 Spike frequency adaptation 

Human neocortical neurons incorporate an /A current, and we saw in the last chapter that 
eqn (9.10) provided an accurate description of the shape of action potentials of regular-
spiking cells (see Fig. 9.11) and also of fast-spiking neurons (by reducing the time constant 
TR. Regular-spiking neurons have one other dramatic dynamical characteristic lacking in 
fast-spiking neurons: the spike rate rapidly decreases or adapts during continued sti
mulation (Connors and Gutnick, 1990; Gutnick and Crill, 1995). This results from 
activation of a very slow hyperpolarizing potassium current, which is generally mediated 
by an influx of calcium (Ca :+) ions. This is frequently termed an afterhyperpolarizing 
potential or /AMP- Data from a human regular spiking neuron (Lorenzon and Foehring, 
1992) showing spike frequency adaptation are plotted in Fig. 10.1C. Adaptation similar 
to this was incorporated into models of short-term memory and neural competition in 
Chapters 6 and 8. 
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Fig. 10.1 Spike frequency adaptation in a regular-spiking (excitatory) cortical neuron. The spike train 
produced by (10.1) is plotted in A for 7=0.85. Spike rate as a function of time for (10.1) is plotted in B for 
/= 1.8. Comparable spike rate adaptation data for a human regular-spiking neuron (Lorenzon and Foehring, 
1992) are plotted in C. 

The dynamical effects of an /AHP current can be produced by adding an additional K+ 

current to eqn (9.10) that is governed by the conductance variable H: 

dV 
cdt 

dR 
~d7 
dH 
~dt 

{17.81 +47.58F+33.8F 2}(F-0.48) 

26R(V+0.95) - \3H(V + 0.95) + I 

R+ 1.29F + 0.79 + 3.3(F + 0.38): 

5.6 

- ^ ( - / / + l l ( F + 0 . 7 5 4 ) ( F + 0 . 6 9 ) ) 

:io. 

The most obvious point about this potential is that the time constant for H is 99 ms, 
almost 20 times slower than R and 100 times slower than V. Also note that the reversal 
potential for this current is V = -0.95 (i.e. -95 mV), the same reversal potential as for K+ 

in the recovery current governed by R. Finally, we have already seen that V = -0.754 in 
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the resting state of (9.10) when / = 0, and (10.1) has been constructed so that H = 0 in this 
resting state. Thus, the /AHP conductance H only has an effect at suprathreshold levels, 
where it grows quadratically with V. Because the H variable has such a long time-
constant, it has no effect on action potential shape but instead functions to slowly 
counteract part of the stimulating current /, thus reducing the spike rate. If you run the 
MatLab script RegularSpiking.m with / = 0.85, you will obtain the spike train depicted in 
Fig. 10.1 A. The /AHP current causes the interspike interval to increase almost threefold 
within 100 ms. Figure 10.1 A also shows that after the stimulating current/is terminated, 
the neuron displays a prominent afterhyperpolarizing potential that results from the very 
slow decay of H in (10.1) back to its equilibrium value. 

The analysis of (10.1) via linearization is very easy, because all of the nonlinearities have 
been limited to cubic order, so the Jacobian is only quadratic in F(see Exercise 1). Because 
H = 0 at threshold and its time constant is so long, action potential initiation in (10.1) 
again begins at a saddle-node bifurcation as depicted in Fig. 9.9. Because of its accel
erating quadratic dependence on F, / / is mainly driven by suprathreshold current levels, 
so it slowly reduces the effective value of the simulating current /, thus producing spike 
frequency adaptation. 

The spike rate adaptation produced by //in (10.1) is plotted as instantaneous spike rate 
(reciprocals of successive interspike intervals) in Fig. 10.IB for / = 1.8. This may be 
compared with the data for a human regular-spiking neuron plotted in Fig. 10.1C 
(Lorenzon and Foehring, 1992). Equation (10.1) accurately describes spike frequency 
adaptation in human and mammalian regular-spiking neurons, which typically causes 
about a threefold reduction in spike rate within 100 ms. Initial and asymptotic spike rates 
for eqn (10.1) as a function of input current / are compared with data from a second 
human regular-spiking neuron (Avoli et al., 1994) in Fig. 10.2. The model correctly 
predicts that both spike rates will be almost linear functions of/above a threshold value 
(Wilson, 1999), although additional factors (Fdependence of rR) are necessary to explain 
saturation effects at high current levels. 

N 
-1. 

' 
<n 

IT 

-̂  n 
CO 

2 5 0 

2 0 0 

1 50 

1 0 0 

5 0 

0 -

• • • • Transient 
o - - Steady State 

L-—rzr\—i—i—<—i— 
Human RS Neuron 

Model Transient 

Model Steady 
I !__! 

Fig. 10.2 Initial transient and steady state spike rates for a regular-spiking neuron as a function of stimulus 
current /. Solid and open circles show transient and sustained data for a human regular-spiking neuron 
respectively (reproduced with permission, Avoli el al., 1994, copyright Springer-Verlag). Solid lines show 
transient and steady state responses of (10.1). 
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We have now developed and analyzed dynamical models of two types of human cortical 
neurons: the excitatory regular-spiking neurons in (10.1), and the inhibitory fast-spiking 
neurons in (9.10) with rR = 2.1 ms. It is significant that only regular-spiking neurons and 
not fast-spiking exhibit spike frequency adaptation. Furthermore, the /AHP current can be 
reduced or blocked in humans by acetylcholine, histamine, norepinephrine, or serotonin, 
all of which are modulatory neurotransmitters in the nervous system (McCormick and 
Williamson, 1989). Thus, the excitability of regular-spiking neurons can be controlled by 
varying the strength of the /AHP current in eqn (10.1). Inhibitory, fast-spiking neurons, 
however, are always in a maximally excitable state, presumably so that they can prevent 
runaway excitation and seizures. 

10.2 Neural bursting and hysteresis 

Slow afterhyperpolarizing /AHP potentials provide the basis for spike frequency adap
tation, and they can also produce more dramatic patterns of neural activity. Chay and 
Keizer (1983) developed a simple model for the action potentials produced by 0 cells in the 
pancreas by adding a slow hyperpolarizing potential to the Hodgkin-Huxley equations. 
Although their parameters were adapted to the pancreas, a neural version of their model 
can be produced by including a hyperpolarizing potential in our Hodgkin-Huxley model: 

dF 
0.8 — = -(17.81 +47.71F+32.63F2)(F-0.55) 

d? v ' 
- 26.0R( V + 0.92) - 0.54/7( V + 0.92) + / 

dR 1 
d? 1.9V 

d / / _ 1 
~d7~250' 

/?+1.35 F+1.03) (10.2) 

H + 93(V+0.70)) 

This is just eqn (9.7) with the addition of an //-mediated hyperpolarizing current having a 
reversal potential equal to that of K+ (—0.92 or — 92 mV). Because V = -0.70 when/= 0 
in the resting state, (10.2) has been designed so that H = 0 as well. The H variable is very 
slow here with a time constant of 250 ms. To see the effects of this slow /AHP current on a 
Hodgkin-Huxley-type neuron, you can run the MatLab script HHburster.m with 
/ = 0.14. The resulting spike train is shown in Fig. 10.3A: following a prolonged initial 
burst of spikes, (10.2) fires bursts of six spikes each about once every 200 ms. As shown in 
the expanded plot of a single burst (Fig. 10.3B), each burst is preceded and followed by a 
rapid subthreshold membrane potential oscillation, and the spikes within each burst 
occur at a constant spike rate of roughly 175 Hz. Some other very interesting bursting 
patterns occur within the range 0.12 < I < 0.25, both very regular patterns like Fig. 10.3 
and with some surprisingly irregular ones which, as we shall see in the next chapter, can be 
chaotic. 

The astute reader may already have guessed the dynamical basis of the bursting pro
duced by (10.2). Recall first that eqn (9.7), from which (10.2) was derived, exhibits hys
teresis because there is a range of inputs /over which a spike-generating limit cycle coexists 
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Fig. 10.3 Bursting produced by hysteresis in (10.2). The time scale in B is expanded to show details of the 
burst in A above the bracket at 500 ms. 

with an asymptotically stable resting state. This is shown in the bifurcation diagram in 
Fig. 9.6. The effect of the very slow //equation in (10.2) is to sweep the effective stimu
lating current /back through the hysteresis region determined by the Fand R equations. 
Thus, upon initial suprathreshold stimulation, spikes are generated by a limit cycle at a 
fairly high rate. The depolarizations produced by these spikes, in turn, cause a slow 
increase in the //-mediated hyperpolarizing current, which effectively reduces the net 
stimulus current until firing ceases. As the neuron is then in a resting state, //will slowly 
decay to near zero, thus removing the hyperpolarization. At some point, the hyper
polarizing current will be low enough so that the stimulus current will again initiate firing. 
This is manifested in a series of bursts separated by periods when the neuron is hyper-
polarized below its threshold. 

These periods between successive bursts vary enormously with /. For / = 0.1, bursts of 
four spikes occur at about 1.3 s intervals. For /sufficiently large, however, all bursting 
disappears, because the /AHP current is no longer strong enough to hyperpolarize the 
neuron to a level below the point where spiking ceases. Thus, a slow hyperpolarizing 
current can produce neuronal bursting via a hysteresis loop when it is incorporated into a 
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Class II neuron model exhibiting a hard Hopf bifurcation as the resting state becomes 
unstable. 

10.3 Calcium currents and parabolic bursting 

The previous example of neural bursting is the simplest type to analyze mathematically, 
because it involves just one additional current that drives the spike-generating apparatus 
through a hysteresis loop. However, most bursting neurons are driven by a more complex 
combination of ionic currents. The most important of these are neurons that incorporate 
both a transient inward Ca 4 (calcium) current Ij, which depolarizes the neuron, and an 
/AHP hyperpolarizing current that is mediated by Ca2+. Several examples of neural 
bursting thought to be driven by the combination of Ij and /AHP currents are illustrated in 
Fig. 10.4. The model presented here is a modified version of the Plant (1981) model for 
bursting in aplysia neurons (Fig. 10.4A) that has been subjected to detailed mathematical 
analysis by Rinzel and Lee (1987). Let us adapt eqn (9.10) by adding two additional 
currents controlled by the conductance variables Xand C: 

^ = - { 1 7 . 8 1 + 47.58 F + 33.8 V2}(V - 0.48) 

-26/v(F + 0.95) - 1.93*0 - 0 . 5 C ) ( F - 1.4) - 3.25C( V+ 0.95) 

^ - = — ( - / \ + 1.29F + 0.79 + 3.3(F + 0.38)2) (10.3) 
d? 5.6 V / 
^ - = -!-(-A'+7.33(F + 0.86)(F+0.84)) 
d? 30 

The variable X represents the Ca2+ conductance, which is a quadratically accelerating 
function of Fat subthreshold levels. Because the equilibrium potential for Ca2+ is about 
+ 1.4 (i.e. +140 mV), the X variable controls a depolarizing current that affects V through 
the term 1.9 3 *(1 -Q.5C)(V- 1.4). The factor (1 - 0.5C) in this expression, which is not 
present in the original Plant (1981) model, reflects evidence that /T currents inactivate 
(Hille, 1992; Johnston and Wu, 1995). This method of approximating inactivation was 
developed by Rinzel (1985) to simplify the Hodgkin-Huxley equations by letting 
k = 1 — n and was discussed in deriving (9.3) in the previous chapter. As will be seen, the 
current controlled by A'triggers action potential bursts. 

The second effect of A'is to increase the concentration of internal Ca2+ represented by 
the variable C, by providing the input to the dC/dt equation. C in turn is the very slow 
(time constant of 100 ms) Ca2+ -modulated conductance of a separate K+ channel, which 
is represented in the Fequation by the term -3.25C( V + 0.95), the equilibrium potential 
of K+ being chosen as -0.95 (-95 mV). This is a more accurate description of an /AHP 
current that is modulated by Ca2+. The dC/dt equation in (10.3) lacks the Vdependence 
of the comparable equation in the Plant (1981) model, because of evidence that most 
mammalian /AHP currents are not voltage gated (Johnston and Wu, 1995). 
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Fig. 10.4 Examples of bursting neurons. Endogenous bursting of aplysia neuron Rl 5 is shown in A. In B a 
second aplysia bursting neuron had Na* channels blocked by tetrodotoxin (TTX) causing a reduction and 
then cessation of action potentials, but Ca"*-mediated membrane potential oscillations persisted (A and B 
(reproduced with permission) from Mathieu and Roberge. 1971). Mammalian neocortical neurons that burst 
in response to constant stimulation are illustrated in C (mouse somatosensory cortex. Agmon and Connors, 
1989) and D (chattering cell in cat visual cortex. Gray and McCormick. 1996). Each burst in these 
mammalian cells is typically comprised of 2-5 spikes. 

Equation (10.3) is relatively difficult to analyze (see Rinzel and Lee's (1987) analysis of 
the Plant model), but a lot can still be learned by linearizing and using a Hopf bifurcation 
analysis as outlined here. Recall first that eqn (9.10), from which (10.3) was derived, has 
the three steady states depicted in Fig. 9.9 when / = 0, so spike generation in (9.10) begins 
at a saddle-node bifurcation. There is no input current in eqn (10.3), but the A-modulated 
current produces a slow depolarization of the membrane which ultimately leads to burst 
firing by driving the neuron through a bifurcation. Once bursting begins, the A'-controlled 
Cconductance causes a very slow hyperpolarizing current to build up and also inactivates 
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the Acurrent until the burst is terminated. This sequence of events then repeats itself as a 
complicated limit cycle in four dimensions. 

Running MatLab script PlantBurster.m will produce the bursting pattern shown in 
Fig. 10.5A.B. This may be compared with the response of an aplysia (an invertebrate) 
R15 neuron, in Fig. 10.4A.B. These neurons can be identified in all aplysias, and the burst 
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Fig. 10.5 Responses of endogenous bursting neuron described by (10.3). B shows an expansion of the burst 
near 1000 ms bracketed in A. Mathematical simulation of TTX application to (10.3) is shown in C. Compare 
to Fig. 10.4A.B. 



164 Spikes, decisions, and actions 

pattern is common across individuals. (Note that model time constants have not been 
scaled to fit the very long time-course of the aplysia neuron.) Each burst is followed by 
an afterdepolarizing potential (ADP), which has been observed in bursting neurons of 
many species (see Fig. 10.4). Mathematically, depolarizing afterpotentials occur 
because each spike is followed by a rapid hyperpolarization caused by the R variable 
mediated K+ current, yet the slow depolarizing current caused by X has not yet 
decayed away fully after the end of the R hyperpolarization. Thus, the ADP is not 
produced by a separate ionic current in the model but rather by a combination of fast R 
and slower A'currents. 

Equation (10.3) describes an endogenous burster, as bursting behavior is triggered 
entirely by the slow inward /T current through the cell membrane mediated by X. Such 
neurons are particularly important as pacemakers in many invertebrate nervous systems. 
The program PlantBurster.m plots an A-C projection of the four-dimensional state space 
of (10.3) to show the limit cycle produced by interaction of these two variables. The role of 
A'can be analyzed as follows. Solving for the steady states of (10.3) reveals only one in 
the physiological range at V = —0.727, X = 0.11, R = 0.25, and C = 0.33, and linear 
analysis shows that this is an unstable spiral point. This does not, of course, demonstrate 
the existence of a limit cycle, but it does guarantee that the system will not remain at rest. 
If, however, the coefficient 7.33 in the dA"/d? equation were replaced by zero, both Xand 
C would be identically zero at all steady states of (10.3), so the equations for V and R 
would become identical to (9.10) from which they were derived. In this case the system 
must remain at rest in the absence of external current, so (10.3) could no longer fire 
bursts. 

We can take these considerations still further by employing a mathematical analog of a 
technique used by electrophysiologists. Mathieu and Roberge (1971) revealed the role of 
slow Ca2+ currents in mediating bursting in aplysia neurons by applying tetrodotoxin 
(TTX), a nerve poison, to the neuron from which they were recording. TTX is extracted 
from glands of the Japanese puffer fish, regarded as a sushi delicacy in Japan, but it is a 
deadly neurotoxin that occasionally kills gourmets when the sushi chef fails to remove the 
glands properly. TTX operates by blocking the voltage-sensitive Na+ channels that are 
responsible for the rising phase of the action potential. Thus, someone who ingests TTX 
will shortly have all neurons in his brain stop firing! The effects of TTX on an aplysia 
neuron are illustrated in Fig. 10.4B. Following application at the time indicated, suc
cessive bursts are reduced to fewer and fewer action potentials until all are abolished. As 
shown in the final record in Fig. 10.4B, however, the neuron continued to generate a slow 
oscillation in membrane potential even when all spikes had vanished. This biophysical 
approach demonstrates that bursts of action potentials in aplysia are riding on crests of an 
endogenous oscillation of membrane potential driven by slow depolarizing and hyper
polarizing currents. 

Let us alter eqn (10.3) to reproduce the effects of TTX. All we need do is replace the V 
dependence of the Na ¥ conductance, which multiplies the potential term (F - 0.48) in the 
dV/dl equation, by its constant value at rest. As the equilibrium of (10.3) occurs at 
V = —0.727, let us evaluate the Na+ conductance at this point where its value is found to 
be 1.0836. This represents a passive leakage conductance at rest that was explicit 
in eqns (9.1) to (9.3) but was absorbed in subsequent analysis. This changes the 
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first equation in (10.3) to: 

dF 
— = -1 .0836(F- 0.48) -26R(V+ 0.95) 

- 1.93A-(1 - 0 . 5 C ) ( F - 1.4) -3.25C(V+ 0.95) (10.4) 

In this equation the active aspect of the Na+ conductance has been blocked with a 
mathematical application of TTX, thus leaving only the passive properties of the mem
brane with respect to Na+ . The effects of incorporating (10.4) into (10.3) may be observed 
by running the script PlantBursterTTX.m. This produces the voltage oscillations in Fig. 
10.5C, which may be compared with the aplysia TTX data in Fig. 10.4B. Clearly, our 
mathematical application of TTX has abolished all spiking activity. In doing so, however, 
it has revealed an intrinsic limit cycle driven by the X and C variables. The program shows 
this by plotting the A-C projection of the four-dimensional phase space of the system. One 
can now complement this simulation with a mathematical analysis of the TTX poisoned 
system in (10.4). If the coefficient 7.33 in the dX/dt equation in (10.3) is treated as a 
variable parameter, it cane shown by linearized analysis that the system undergoes a Hopf 
bifurcation to a limit cycle as this coefficient increases from zero. This demonstrates that 
the slow depolarizing Ca2+ current mediated by A is responsible both for the intrinsic 
membrane oscillations in the TTX simulation and for the bursting exhibited by (10.3). 

Before leaving the Plant (1981) model for bursting in aplysia, let us consider one final 
aspect of the spike bursts. A close examination of Fig. 10.4A reveals that each burst begins 
and ends with interspike intervals that are longer than those in the middle of the burst. 
Thus, the instantaneous spike frequency in these bursts begins low, climbs to a peak, and 
then decays before the burst is finally extinguished by hyperpolarization. This is known as 
parabolic bursting because the spike rate approximates a parabola during each burst. 
Rinzel and Lee (1987) have shown that the Plant (1981) equations will produce parabolic 
bursting if the parameters are modified slightly. To see this, let us increase the time 
constants for X and C in (10.3) to 125 ms and 300 ms respectively. This will slow the 
endogenous membrane oscillation significantly, thus producing bursts with many more 
spikes each. With these modifications eqn (10.3) produces bursting like that shown in 
Fig. 10.6, which was obtained from a 2500 ms simulation using ParabolicBurster.m. The 
instantaneous spike frequency during the burst is plotted below and shows the char
acteristic parabolic shape of the burst. Thus, parabolic bursting represents a variation on 
the theme of interacting Ij and /AHP currents. 

10.4 Neocortical bursting 

Although bursting neurons were first discovered in invertebrates, such as aplysia, similar 
neurons have more recently been discovered in mammalian neocortex. For example, 
Fig. 10.4C shows activity from a bursting neuron in mouse somatosensory cortex (Agmon 
and Connors, 1989), while Fig. 10.4D shows responses of a 'chattering' cell in cat visual 
cortex (Gray and McCormick, 1996). In both these cases, the bursting is not endogenous 
but instead must be driven by a constant stimulating current injected into the cell by the 
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Fig. 10.6 Parabolic burst of spikes in A and spike rate in B (reciprocal of interspike intervals) from (10.3) 
with modified time constants described in the text. 

experimenter. However, the bursting still reflects intrinsic membrane properties of these 
cells rather than network properties. 

As an interplay of /T and /AHP currents also provides the basis for bursting in mam
malian neurons, let us explore a model for them that is derived from (9.10) and is similar in 
form to eqn (10.3). The equations are: 

dF 
d?" 

dR _ 1 
d7~ 2+ 
d A _ 1 
~d7~L5 
dC_ J_ 
~d7~ 56 

{17.81 +47.58F+ 33 .8F : }(F- 0.48) - 26/?(F+0.95) 

1.7A(F- 1.4)- 13C(F + 0.95) + 7 

R+ 1.29F+0.79 + 3.3(F+0.38)2) (10.5) 

( -A+9(F+0 .754 ) (F + 0.7)) 

(-C + 3X) 
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The R variable now has the faster 2.1 ms time constant characteristic of fast-spiking cells 
(see Fig. 9.11), because chattering cells have a much narrower spike than regular-spiking 
neurons (Gray and McCormick, 1996). The key difference between (10.5) and (10.3), 
however, is found in the dA"/d? equation. As it was shown in the last chapter that 
V= -0.754 at equilibrium in (9.10), the factor (F+0.754) in the dX/dt equation guar
antees that X = 0 and therefore also C = 0 in the absence of an external current /. 
Therefore, eqn (10.5) will remain in the resting state with V = —0.754 when / = 0, 
guaranteeing that (10.5) cannot generate endogenous bursts. 

Let us study eqn (10.5) using a combination of analytical methods and simulations. The 
isocline equations are easily obtained, and substitution then leads to the following 
equation for the equilibrium points: 

485.9F3 + 1056.24F2 + 768.736F+ 187.424 - / = 0 (10.6) 

Six-figure precision in this equation is necessary in order to obtain accurate roots. Dif
ferentiation of (10.5) then leads to the following expression for the Jacobian, where V 
must be evaluated at the steady state: 

I an -26(F+0.95) 

3.1429 F+1.8086 -0.47619 

^ F + 0.8724 0 

a,, = -553.5F2 - 694.06F- 221.23 

The first entry an has been written separately, as it will be altered later. It should be 
emphasized that while the steps involved in obtaining (10.6) and (10.7) only involve simple 
algebra and differentiation, this is a case where the reliability of a symbolic mathematics 
program such as MathView, Maple, or Mathematica is extremely helpful in avoiding 
errors. 

If you solve (10.6) for 1=0 using the MatLab roots function and then analyze the 
stability of the only equilibrium point, which occurs at V = -0.754, you will find that it is 
an asymptotically stable node. As (10.5) is a four-dimensional system in which we seek 
spike-producing limit cycles, it is natural to look for a Hopf bifurcation, and the input 
current / is the natural variable to choose for the analysis. This is a case in which the 
problem can be solved in reverse: first Fis treated as a parameter in (10.7) and the Routh-
Hurwitz criterion is used to determine the value of V at which two roots are pure ima
ginary. Equation (10.7) for A has been entered into the function ChatteringHopf.m, and 
this can now be solved by running the script R_Hchatter.m which gives F = -0.7017 as 
the bifurcation value. (Note that there are two bifurcation points here, so the one obtained 
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Fig. 10.7 Bursting behavior of (10.5) for / = 0.3. Spike bursts in A with prominent ADP are comparable to 
data in Fig. 10.4C.D. The X-C projection of the four-dimensional state space is plotted in B to illustrate how 
these variables drive the bursting limit cycle. 

depends on the initial guess.) The program finds that the four eigenvalues are A = -7.14, 
-0.16, and ±0.0453i. Thus, the system satisfies the Hopf Bifurcation Theorem 11, and the 
emergent limit cycle of( 10.5) begins with frequency (0.0453/27r) x 1000 ms/s =7.21Hz. 
Substitution of the bifurcation value V= -0.7017 back into (10.6) now shows that 
/ = 0.197 nA is the input current at which the bifurcation occurs. 

This mathematical analysis can be corroborated by running the script Chattering.m 
with a range of / values in the vicinity of / = 0.197. If you then run Chattering.m with 
/ = 0.3, you will obtain the sequence of bursts plotted in Fig. 10.7. As you can see. this has 
the characteristics of spike trains from the chattering cell and the mouse somatosensory 
neuron shown in Fig. 10.4C.D. In particular, spike height decreases after the first spike in 
the burst, there are a small number of spikes per burst, and each burst is terminated with 
an afterdepolarization (ADP). It is interesting to explore the effect of different current 
intensities on both the burst frequency and the number of spikes per burst. 

This mathematical analysis of eqn (10.5) for a chattering cell reveals that the system will 
undergo a Hopf bifurcation with an initial frequency of 7.21 Hz when / = 0.197. To 
complete analysis of (10.5), it is necessary to demonstrate that these slow membrane 
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potential oscillations above the Hopf bifurcation achieve sufficient amplitude to push the 
spike-generating apparatus in the fast V and R equations back and forth through their 
saddle-node bifurcation. Demonstrating this analytically is extremely difficult, so let us be 
content to show that it does indeed occur using the simulation of (10.5) in Chattering.m. 
The A-C projection of the four-dimensional state space plotted in Fig. 10.7B for / = 0.3 
shows that these two variables do indeed produce a limit cycle that drives the V and R 
equations through their saddle-node bifurcation into a spiking regime and back again. 
Note that the X-C oscillation is coupled to spike generation via V so this is not a simple 
example of one autonomous limit cycle driving a second limit cycle. This is why the 
mathematical analysis is complex. 

Our previous analysis of the Plant (1981) burster and the physiology of aplysia neurons 
showed that the Ca2+ oscillations in V could be revealed using a mathematical version of 
TTX application, and the same is true for the model in (10.5). In this case analysis of 
simulated TTX poisoning of the Na+ conductance in (10.5) is developed in Exercise 2, 
where you will see that slow membrane oscillations are indeed revealed. 

10.5 A dynamical taxonomy of neurons 

Our dynamical analysis has now covered the range of behaviors discovered in different 
nerve cells from a wide range of species. Furthermore, this analysis enables us to specify 
which aspects of membrane biophysics make each cell type unique. This section provides a 
brief summary of the dynamical taxonomy that emerges from analysis of mammalian 
neocortical neurons and from bursting. 

The mammalian neocortex contains four classes of neurons differentiated with respect 
to their spiking responses to sustained intracellular current injection: regular-spiking (RS) 
cells, fast-spiking (FS) cells, bursting or chattering cells, and intrinsic-bursting (IB) cells 
(Connors and Gutnick, 1990; Gutnick and Crill, 1995; Gray and McCormick, 1996). FS 
neurons are the simplest of these dynamically, as they can be described by the two 
equations in (9.10) with TR = 2.1 ms. These inhibitory interneurons in the cortex fire at 
high rates due to their narrow action potentials and their lack of adaptation. RS neurons 
are the next more complex cells, as they incorporate an /AHP potential that produces spike 
frequency adaptation and a longer time-constant TR that results in broader action 
potentials (see Fig. 9.11). The dynamical properties of RS neurons therefore require at 
least the three equations in (10.1). Neocortical bursting cells (see Fig. 10.4C,D) are the 
most complex dynamically, as they can only be described by four-dimensional dynamics 
incorporating depolarizing / j and hyperpolarizing /AHP currents as described by eqn 
(10.5). The final cortical neuron type, the IB cell, has dynamical properties intermediate 
between RS and chattering neurons and can be generated from (10.5) by modest 
parameter changes. Our models for these neocortical neuron classes are closely related 
dynamically, as all share the same Fand R equations (except for the time constant TR). 
They are differentiated by the presence of zero (FS), one (RS), or two (bursting) addi
tional currents that generate the patterning of the spike trains. While neocortical neurons 
do possess about 12 different ionic currents (Gutnick and Crill, 1995; McCormick, 1998), 
the essential nonlinear dynamics can be captured in four dimensions. 
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A taxonomy of bursting neurons was first proposed by Rinzel (1987). Following his 
classification and that of Bertram et al. (1995), the simplest type of bursting is 
represented by the recurrent excitatory-inhibitory network oscillator in eqn (8.2) (Wilson 
and Cowan, 1972). In this case bursting is represented by a spike rate that is periodically 
terminated by inhibitory feedback. A second example of this simple bursting theme is 
embodied in (8.20) which describes neural competition with adaptation. The next more 
complicated burster is the Chay and Keizer (1983) model described by the three equations 
in (10.2). The most complicated bursting neurons discovered thus far are the parabolic 
bursters exemplified by the Plant (1981) model in (10.3). As we have seen, parabolic 
bursting requires two fast dynamical variables, F and R, to describe action potential 
generation plus two slower variables, A'and C, to describe the Ca2+-mediated Ij and /AHP 
currents that produce endogenous membrane potential oscillations even in the presence 
of TTX. Thus, we have explored the taxonomy of two-, three-, and four-dimensional 
bursting behaviors proposed by Rinzel (1987). In subsequent chapters it will be shown 
that networks incorporating neural bursting are extremely important in many forms of 
motor control. 

10.6 Exercises 

1. As indicated in the chapter, the excitability of regular-spiking neurons can be con
trolled by various modulatory neurotransmitters. To explore the range of their possible 
effects, consider the following modification of eqn (10.1): 

d V , 
_ = -{17.81 + 47.58 F+33.8F-}(F-0 .48) - 26R( V + 0.95) 

-gH(V+0.95)+1 

dR 1 i 
— = — ( - R + 1.29K+ 0.79 + 3.3( I' + 0.38)' 
d? 5.6 V 

<^t=^)(-H+\\(V+0.7'i4)lV+0.69)) 

where the strength of the H-mediated current in the first equation is determined by the 
parameter g, which is assumed to be under neuromodulator control, (a) By suitably 
modifying Regularspiking.m, compare the asymptotic spike rates (simulate for 300 ms) 
forg = 0,6, and 18. For each value of g, obtain the rate for / = 0.5, 1.0, and 1.5, and plot 
all your spike rates on a single graph as a function of/, (b) Prove that there exists a value of 
g for which these equations will only produce a finite number of spikes and then cease 
firing for/ < 2. Be sure to indicate your reasoning. (Hint: solve for the value of g for which 
the steady state can never reach the value of ['defined by the threshold bifurcation. Then, 
prove that this steady state is asymptotically stable.) 

2. The simulation of (10.5) in Fig. 10.7 shows bursts of three spikes separated by about 
225 ms. Using the simulation in Chattering.m, obtain and plot both the spike frequency 
within each burst and the burst frequency for input currents / from threshold up to 
/ = 1.5. Suggest an explanation for the pattern of results you find. 
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3. Hindmarsh and Rose (1984) have proposed a model of neural bursting using three 
differential equations. A slightly modified version of their model is: 

— = - F3 + 3 F2 + 0.125 - R - H + I 
dt 
dR 
-—=-R + 5V2-\ 
dt 

A IT 1 

^ - = ~ 5 0 ( - H + 2(F+1.5 )) 

Give an analysis of the neural bursting produced by these equations. In particular: (a) set 
H = 0 and analyze the steady states and solutions of the V and R equations for / = 0. 
(b) Determine the response when H = 0 and the stimulus is a 25 ms pulse with amplitude 
0.6. Such a pulse is easily produced in MatLab by setting / = 0.6 x (Tme < 25). (c) Using 
what you have now learned about the solutions, make a graph of the two-dimensional 
state space for / / = 0 with isoclines and show plots of any limit cycle trajectories, 
(d) Simulate all three equations for constant stimulation / = 0.6 and plot the spike trains 
to show that bursting does occur. Provide an explanation of the bursting, being sure to 
indicate what type of bifurcation to bursting is involved. This is a further type of neural 
bursting (Bertram et al., 1995). 

4. In this problem you will predict the results of applying TTX to the neocortical bursting 
model in (10.5). On the assumption that TTX poisons the active properties of the Na+ 

channels, replace the first of the four equations in the model by: 

^ = - { 17.81 + 47.58Frest + 33.8F2
es,}(F- 0.48) - 26R(V + 0.95) 

- 1.7A7F- 1.4)- 13C(F+0.95)+/ 

where Frest = —0.754. (a) Calculate the altered Jacobian and analyze all equilibrium 
states and their stability for / = 0. (b) Prove that there is a Hopf bifurcation for Fnear the 
resting value and determine the values of V and I at this bifurcation. (Note that there will 
be more than one bifurcation point; you must find the appropriate one.) (c) Simulate your 
TTX equations and plot F(?) for /just above the bifurcation value. Compare the oscil
lation frequency predicted by the Hopf theorem with your results. 

5. The endogenous bursting model in (10.3) simulates both inactivation of ly and /AHP 
current to stop bursts. However, bursting can be produced by an inactivating /T current 
alone. To examine this, modify the first equation in (10.3) to: 

— = -J17.81 +47.58F+33.8F 2 ) (F-0 .48) - 26R(V + 0.95) 
d? L 

-2A"(1 -C)(V- 1.4) 

The (1 - C) factor here represents full inactivation of the /T current. Simulate this system 
by modifying PlantBurster.m appropriately. Next, solve for the equilibrium state, 
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determine the Jacobian, and prove that the equilibrium is unstable. Finally, simulate the 
effects of TTX application by replacing the voltage dependence of the Na+ conductance 
in the first bracket above with its evaluation near equilibrium: 

{1.065} 

Show by simulation that the resulting equations still generate a limit cycle. 
6. Addition of/T and /AHP currents to the Morris-Lecar equations (9.11) can also pro
duce a model for cortical bursting. Consider the following equations: 

d_F 
~d7 

dR 
~dl 
dA 
"dT^lOV ' ' 1 + e x p ( - ( F + 0.03)/0.01 

g(V) 

G(V) 

-g(V)(V- 1.0) -2R(V+0.7) - 0 .5 (F+0 .5 ) 

-0 .1A(F-2 .0 ) - C ( F + 0 . 7 ) + / 

0A(-R + G(V)) 

-X + -

1 +exp(-(K+0.01)/0.075) 
1 

1 +exp(- (F-0 .1) /0 .07) 

where the time constant in the dR/dt equation has been made independent of V for 
simplicity. The A'and C mediated currents here play the same role as in (10.3) or (10.5). 
Using the simulation MLburster.m, determine the threshold current / for producing 
bursts. Next, simulate the effects of TTX by setting g(V) = 0, and again determine the 
threshold for producing an oscillation. What type of bifurcation appears to be involved in 
the initiation of bursting based on your simulations? Why? 



11 Neural chaos 

As we have developed more background in nonlinear dynamics, we have dealt with 
increasingly more complex neural systems. In all cases, however, system trajectories have 
either approached an asymptotically stable steady state or an asymptotically stable limit 
cycle. Nonlinear dynamical systems may, of course, have several steady states and several 
limit cycles, which leads to a rich and complex mix of dynamical possibilities. Various 
neurophysiological applications of these nonlinear dynamical principles have provided 
models of short-term memory, decision making, action potential generation, and 
bursting. One might conjecture that we have exhausted the range of dynamical possibil
ities available to the nervous system and that all complex neural phenomena are emergent 
properties determined by combinations of these elementary nonlinear phenomena. While 
there is no doubt that a large range of brain functions can indeed be understood in terms 
of the nonlinear phenomena studied thus far, we have not exhausted the range of sur
prising behaviors that nonlinear dynamics has to offer. In this chapter, deterministic, 
nonlinear systems will be shown to exhibit seemingly unpredictable behavior known as 
chaos. Neural chaos is a source of important limitations on scientific prediction and even 
on our own self-knowledge! 

11.1 Defining chaos 

To motivate this chapter, it is helpful to recall the Poincare-Bendixon theorem (Theorem 
10). In essence, this theorem says that if an annulus can be constructed in a two-dimen
sional system such that all trajectories enter it, yet it contains no steady states, then a limit 
cycle must exist within the annulus. Why is this theorem restricted to two-dimensional 
systems? Advanced mathematics tells us that the topological generalization of an annulus 
to three dimensions is a torus or 'doughnut', and this concept readily generalizes to higher 
dimensions. Why cannot the Poincare-Bendixon theorem be extended to higher 
dimensions by substituting a region bounded by a torus for the two-dimensional annulus? 
The key conceptual reason is that in an autonomous system, trajectories can never 
intersect and cross, and this provides a definitive constraint in two dimensions. However, 
trajectories in a system with more than two dimensions can pass by without intersecting 
in an infinite number of ways. Some of these involve complex periodicities or almost 
periodic behavior (quasiperiodic trajectories), while others can be aperiodic and chaotic. 

In developing a definition of chaos, let us consider the various possibilities for a tra
jectory confined to a torus in a higher dimensional system. Assume that the torus contains 
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no equilibrium points, so the trajectory can never come to rest. The fact that the trajectory 
is confined to a torus means that it must remain bounded for all future time, and we shall 
see that this is one crucial element in the definition of chaos. The simplest possibility is 
that the trajectory will approach an asymptotically stable limit cycle, a scenario studied 
extensively in the past three chapters. 

As a second possibility, consider a four-dimensional linear system. Without bothering 
to write down the equations, let us assume that the eigenvalues of the system are all pure 
imaginary. Suppose, for example, that they are A = ± 2i and A = ± 5i. All four variables 
describing any particular trajectory will now have the form: 

A", = Asm(2t) + 5cos(2?) + Csin(5?) + Z)cos(5?) (11.1) 

Thus, all variables will be sums of two oscillations, with the parameters A-D being 
determined by initial conditions. In this case, no matter what the values of A-D may be, 
every solution is a closed trajectory with frequency 27r/10. This is an oscillation (but not a 
limit cycle), and it simply represents a coiled spring spiraling around a torus in the four-
dimensional state space of the system and connecting up with itself. 

Suppose now that a parameter in the four-dimensional system that gave rise to solution 
(11.1) is changed so that the eigenvalues now become A = ± 2i and A = ±\/23i. Now the 
solutions will be of the form: 

Xi = Asm(2t) +Bcos(2t) + Csm(v/23?) + Dcos(V23t) (11.2) 

where A-D are again determined by the initial conditions. This example has been chosen 
so that one frequency is irrational while the other is not. Therefore, the solution cannot be 
periodic, because there is no period T after which both oscillations in (11.2) return to 
exactly the same values simultaneously. The trajectories of a dynamical system that has at 
least two frequencies, at least one being irrational, are called quasiperiodic. In the four-
dimensional space of the system with solutions (11.2), each trajectory will spiral around a 
torus without ever rejoining or crossing itself. Nevertheless, (11.2) is not very different 
from a true periodic solution such as (11.1), hence the term quasiperiodic. One further 
characteristic that (11.1) and (11.2) have in common is that trajectories starting from very 
similar initial conditions (similar values of A-D) will remain close together for all future 
time. The same is true of nonlinear systems with limit cycle oscillations, where neigh
boring trajectories approach the limit cycle together. 

In contrast to all examples above, some nonlinear dynamical systems exhibit complex, 
aperiodic dynamics that are now called chaos. Chaos can be defined by distinguishing it 
from the alternative dynamical behaviors in higher dimensional systems discussed above: 

Definition: A deterministic nonlinear dynamical system in three or more dimensions 
exhibits chaos if all of the following conditions are satisfied for some range of param
eters. (1) Trajectories are aperiodic (not quasiperiodic). (2) These aperiodic trajec
tories remain within a bounded volume of the state space but do not approach any 
steady states. (3) There is sensitivity to initial conditions such that arbitrarily small dif
ferences in initial conditions between nearby trajectories grow exponentially in time. 
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The three conditions in this definition concisely differentiate chaos from other dynamical 
behaviors. Periodic and quasiperiodic behaviors are explicitly excluded. The sensitivity to 
initial conditions means that any small difference in measurement of initial conditions of a 
chaotic system will shortly lead to exponential uncertainty and inability to predict its 
behavior in the future. The atmosphere of the earth is a chaotic system with the con
sequence that weather prediction more than a few days in advance is extremely proble
matic. Chaos was first fully studied by the meteorologist Edward Lorenz (1963, 1993), 
although Poincare was aware earlier of nonlinear dynamical systems that have subse
quently been shown to be chaotic. Finally, the boundedness of all solutions means that 
exponential growth of small differences in initial conditions is not simply a consequence of 
trajectories moving off to infinity away from an unstable equilibrium point. As already 
discussed, the Poincare-Bendixon theorem demonstrates that chaos cannot exist in a two-
dimensional dynamical system. 

The definition of chaos above is most easily understood by example. The first dynamical 
system in which chaos was explicitly studied was designed to describe air flow in the 
atmosphere by the meteorologist Lorenz. The Lorenz (1963) equations describe a three-
dimensional dynamical system: 

dx 
"d~t 
dr 
d? 
dz _ 8 
d ? ~ ~ 3 

\0(-x+y) 

-V + 28.Y-.YZ (11.3) 

8 
z + xy 

Note how simple these equations appear, as they contain only two nonlinear product 
terms, xz and xy. Analysis of (11.3) begins with solving the isocline equations for the 
equilibrium points. As the first isocline equation is simply x = y, the remaining two are 
easily simplified to: 

27.x- - xz = 0 
(11.4) 

These equations can be solved for x to give x = 0, ±\/72, so there are three equilibrium 
states located at (0,0,0), (\/72, v/72,27), and (-\/72, - \/72,27). Analysis of the Jaco
bian indicates that all three equilibrium points are unstable, being respectively a saddle 
point and two unstable spiral points. Clearly, therefore, no trajectory can ever approach 
an equilibrium point of the system. It is also possible to construct an ellipsoidal surface 
enclosing all three equilibrium points such that all trajectories that cross this surface enter 
the ellipsoid (see Chapter 14 for the general approach based on Lyapunov functions). 
Therefore, all trajectories beginning near any equilibrium point must remain bounded for 
all future time. This suggests the possibility of chaos, although limit cycles or quasiperi
odic solutions have not yet been excluded. Let us therefore simulate (11.3) for the initial 
condition (10, 10, 40). Running MatLab script Lorenz.m produces the results depicted in 
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Fig. 11.1 Chaotic trajectory of the Lorenz equations (1 1.3). The A'-Z projection of a trajectory in the three-
dimensional state space is plotted above with two of the unstable steady states (circles), and X(t) is plotted 
below. 

Fig. 11.1. This trajectory certainly seems to be far more complex than a limit cycle, but is it 
chaos? 

11.2 Signatures of chaos 

To ascertain whether or not equations like (11.3) produce chaos it is necessary to ignore 
the equations and examine the trajectories themselves. To ascertain whether this time-
dependent function is indeed chaotic takes us into the realm of time series analysis, the 
analysis of a sequence of measurements recorded from a system to determine whether the 
underlying dynamics are chaotic (see Kaplan and Glass (1995) for an excellent intro
duction to time series analysis). In analyzing a system for chaos, we already know that the 
lime series must fall into one of four categories: a limit cycle (however complex), a quasi-
periodic solution, chaos, or random variation caused by noise. The latter possibility 
does not, of course, occur in (11.3), because this is a deterministic system. A neuroscientist 
in the laboratory, however, may not know the equations that define the system being 
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studied, and some noise will always be present in the data. Accordingly, let us examine 
several tests for chaos and see how they differentiate among limit cycles, quasiperiodicity, 
chaos, and noise. 

Three quantitative tests will be applied to a time series to determine whether it is 
chaotic. These are: the Fourier power spectrum, the Poincare section, and the Lyapunov 
exponent. These tests will be applied to each of four different time series: (11.1) with 
A = 2, C = 3, B = D = 0; (11.2) with A = 2,C = 3,B = D = 0; the solution x(t) to (11.3), 
and MatLab's random number generator with numbers normally distributed with mean 0 
and standard deviation l(the randn function). 

Books on the Fourier transform (e.g. Gaskill, 1978) prove that any finite series of points 
describing a time series may be exactly represented as a sum of sine and cosine functions 
with appropriate coefficients. Furthermore, there is a very fast algorithm for calculating 
these coefficients known as the fast Fourier Transform, which is implemented in MatLab 
as the function fft. The Fourier power spectrum is simply the square of the amplitude of 
each frequency term in the Fourier transform. If a time series is either periodic or quasi-
periodic, its Fourier power spectrum will have large peaks at the dominant frequencies. 
The script ChaosTester.m includes time series that are both periodic and quasiperiodic. 
Running the program and choosing either of these options will produce a Fourier power 
spectrum with two large peaks reflecting the two frequencies in (11.1) and (11.2). (Choose 
0 for the first return map value, which will be discussed below.) Note that the power 
spectrum is plotted on semi-logarithmic coordinates, so the peaks are about 105 times 
higher than the background noise. 

Turning to the simulation of (11.3) using Lorenz.m, all computed values for x{t), ylt), 
and r(?) remain in MatLab's memory after a program is run, so the results can be analyzed 
by running ChaosTester.m after Lorenz.m. The variable z(t) will be chosen as the time 
series for analysis, and 25 is an appropriate value for calculating the first return map. The 
Fourier power spectrum is plotted at the bottom of Fig. 11.2. There are clearly a vast 
number of frequencies in the spectrum, and their mean amplitude falls off smoothly 
as frequency increases. Such an amplitude spectrum is one characteristic signature 
of chaos. 

The second test for chaos requires computation of the first return map. Given a time 
series such as z(t) obtained from solving (11.3), one chooses a value zo and measures 
all the intervals between the times when z(t) returns to this same value as z(t) is increasing. 
These intervals between successive times T, when the time series passes zo are called first 
return times. A two-dimensional graph can now be generated by plotting T,+ \ as a 
function of 77,. This is called a first return map. The program (ChaosTester.m produces the 
first return map shown at the top of Fig. 11.2 for z(t) from (11.3) when z0 = 25. Clearly, 
the return map does not cover all possible values but rather produces a complex shape that 
is characteristic of chaos. Experimentation with ChaosTester.m shows that an oscillation 
produces a first return map with only one or a small number of points. In the simplest 
oscillatory case there is only one point, because all first return values are equal to the 
period. Random noise fills the space eventually, because there is no correlation between 
successive return times, although there is a bias towards shorter return times when the 
noise is normally distributed. Finally, a quasiperiodic trajectory will produce a first return 
map that is a simple ellipse. The reason is that a quasiperiodic trajectory fills the surface of 
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Fig. 11.2 First return map (top) and Fourier power spectrum (bottom) for the Lorenz equations (11.3). 

a torus, and the first return map effectively cuts a cross-section of that torus. Thus, chaotic 
trajectories or time series exhibit a distinguishing structure in their first return maps. 

The final chaos test is based on one of the defining elements of chaos: sensitive 
dependence on initial conditions such that neighboring trajectories diverge exponentially. 
The average exponent of this rate of divergence is called a Lyapunov exponent. To cal
culate the Lyapunov exponent, it is generally necessary to use the differential equations 
defining a dynamical model. Suppose we calculate one trajectory of (11.3) that we wish to 
examine for chaos. We must next measure the rate of divergence of neighboring trajec
tories all along this one trajectory. Conceptually, this is done by choosing an initial 
condition that differs by a very small amount A, perhaps 10~5 from the value used to 
generate the original trajectory. We now solve the equations for one time iteration 6t of 
the Runge-Kutta routine and measure the Euclidean distance A\ between the new 
solution and the original one. The ratio Ai/A is an accurate measure of the divergence 
of this neighboring trajectory. Thus, if Ai/A > 1 the trajectory is diverging from the 
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Fig. 11.3 Illustration of Lyapunov exponent computation. A neighboring trajectory, beginning a small 
distance A away from the original trajectory, is computed for one time step, and the resultant distance from 
the original trajectory, A| is then determined. The procedure is repeated for the duration of the original 
trajectory. The results are averaged in (11.5) to determine the Lyapunov exponent. 

original trajectory, while if A\ / A < 1 the trajectory is converging. These possibilities are 
associated with instability and asymptotic stability of the original trajectory. To complete 
calculation of the Lyapunov exponent, this process must be repeated at point after point 
along the trajectory and the results averaged. This is done by choosing successive con
ditions that are all at distance A from successive points on our original trajectory but in 
the direction of A,. The nature of this computation is illustrated schematically in Fig. 11.3. 
The assumption in calculating an exponent is that neighboring trajectories converge or 
diverge as eA*', where the Lyapunov exponent is A. Therefore, the natural logarithms of 
successive A,/A ratios must be averaged and divided by the Runge-Kutta time increment 
St. The resulting formula for the Lyapunov exponent A of a trajectory computed at N time 
points is: 

1 SK* N6t 
(11.5) 

There are actually as many Lyapunov exponents as there are dimensions of the dynamical 
system, three in the case of (11.3). However, chaotic dependence on initial conditions is 
determined by whether or not the largest of these is positive, and (11.5) provides a means 
for computing the largest exponent. Computing all of the exponents requires linearizing 
around every point on the original trajectory and solving for the local eigenvalues, a much 
more tedious task. 

The MatLab program LyapunovExpt.m implements the computation of (11.5) for the 
Lorenz equations (11.3). First, it is necessary to run a Runge-Kutta simulation using 
Lorenz.m to obtain the trajectory to be analyzed, which MatLab will keep in memory. The 
calculated trajectory can now be analyzed by the program LyapunovExpt.m. The program 
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will ask for the value of A, which should be small (e.g. 10~5), but not so small as to cause 
problems with round-off errors in the computation. For the Lorenz equations (11.3) you 
will find that A is around 0.9, the exact value depending on the length of trajectory 
analyzed. As A > 0, neighboring trajectories diverge exponentially from one another, and 
the system is therefore very sensitive to slight variations in initial conditions. This is a 
defining characteristic of chaos. 

To sum up, three separate tests for chaos have been presented. Any chaotic system 
will have a very complex power spectrum with virtually all frequencies present and 
with power decreasing with increasing frequency. In contrast, the presence of a few 
very prominent peaks is indicative of either periodic or quasiperiodic behavior. A chaotic 
system will also produce a first return map with a complex structure that fills only a 
small portion of the plot. Periodic systems will produce a small number of isolated 
points (perhaps only one!), and quasiperiodic systems will generally form a solid closed 
curve, such as an ellipse produced by cutting the surface of a doughnut. Finally, a chaotic 
system must have a Lyapunov exponent A > 0. Asymptotically stable trajectories, such 
as limit cycles, will have A < 0. If the trajectories of a system satisfy all three criteria for 
chaos, we can be certain that the dynamics are indeed chaotic. When dealing with 
experimentally measured time series, however, it is sometimes quite difficult to be certain 
of chaos, because a deterministic physical system with added noise can sometimes pro
duce non-chaotic trajectories that are seemingly chaotic by our tests. Furthermore, 
measurement of the Lyapunov exponent is generally not possible for experimental data. 
As the focus in this book is on deterministic mathematical models in neurobiology, 
problems of testing noisy experimental time series for chaos will not be discussed, and 
the interested reader is referred to Kaplan and Glass (1995). 

11.3 Hodgkin-Huxley equations and chaos 

The Lorenz equations were chosen to provide a focus for characterizing chaos, because 
they are the first and most famous equations that have been shown to have chaotic 
dynamics. Let us now turn to an example from neurobiology: the Hodgkin-Huxley 
equations as simplified in (9.7). The only difference is that a sinusoidal component has 
been added to the stimulus current /, producing the system: 

0.8-^-= -(17.81 + 47.71 F+32.63 F2)(F-0.55) - 26.0R(V+0.92) + I 

^ = - 1
o ( - « + l . 3 5 F + 1 . 0 3 ) (»"6) 

d? 1.9 
/ = /,, + Asm(2mot) 

We have already seen that this equation only produces periodic spike trains generated by 
limit cycle dynamics when / is a constant in the suprathreshold range. Is there any 
combination of /0, A, and u> that will produce chaos? One's first intuition might be 'of 
course not', because chaos cannot occur in a system with fewer than three dimensions, 
and (11.6) contains only two differential equations. This is incorrect, however, for (11.6) is 
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Fig. 11.4 Spikes generated by (11.6) for A = 0 . 1 . This represents a more complex limit cycle in which every 

third spike is missing. 

in fact equivalent to a four-dimensional system, as the sine term is the solution of two 
additional linear, first order differential equations. Thus, (11.6) has sufficiently high 
dimensionality to permit chaos to occur. 

To explore the range of possible solutions, let us set /o = 0.075 and w = 264.6 Hz and 
determine how the solutions vary with amplitude A. If you run the script HHWchaos.m 
with A = 0, you will see that a spike train is generated with a frequency of about 170 Hz. 
Running the program again with A = 0.4 will produce a spike train at 264.6 Hz as a result 
of locking to the sinusoidal stimulus. Between these two extremes, the patterns get much 
more interesting. An amplitude A = 0.1 generates the spike train plotted in Fig. 11.4. The 
spike train is still periodic, but the period now involves two spikes followed by a sub
threshold response. It can be verified that this is simply a more complex limit cycle 
oscillation by running the tests for chaos. For A =0.1 you will find that the power 
spectrum is very complex and would be almost impossible to distinguish from chaos. This 
is because the limit cycle waveform is so highly nonlinear that there are a large number 
of higher harmonic frequencies present. However, the first return map with a criterion of 
F=0.0 has only two points (with a tiny scatter due to simulation errors), thus demon
strating that this is a limit cycle. Finally, the Lyapunov exponent, which can be deter
mined using LyapunovHHW.m, is found to be A = -0.16. This verifies that the spike 
train in Fig. 11.4 is an asymptotically stable limit cycle rather than chaos. Chaos in 
dynamical systems is frequently approached through a series of bifurcations as some 
parameter varies. In the most common case, the period doubles, then doubles again, etc. 
For the Hodgkin-Huxley model, however, the bifurcations are rather more complex than 
period doubling, but the principle of approaching chaos through a series of bifurcations 
still holds. Reducing the value of A in these simulations by a small amount will reveal 
several more such bifurcations (e.g. at A =0.04). 

Let us now repeat the simulation with A = 0.007. This produces the erratic spike train 
depicted at the bottom of Fig. 11.5. This certainly appears to be chaotic, but the three 
chaos tests must be applied to be certain. A slightly different strategy can be adopted to 
generate the first return map in this case, because the stimulus frequency, 264.6 Hz, 
defines a natural period at which to sample the system. In other words, rather than 
choosing a value of F(?) and determining the interval between recurrences of that value, 
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Fig. 11.5 Return map (above) and spike train (below) produced by (11.6) in response to 264.6Hz sinusoidal 
modulation with amplitude A =0.007. This spike train is chaotic. 

it is natural to choose the known interval that is the sinusoidal stimulus period and 
record the values of F(?) at those time instants. If the period is p. F(?) is plotted versus 
F(? + p), and the resulting map provides the same information as a first return map. For 
example, under conditions where each stimulus cycle triggers a phase-locked spike, the 
system has a simple limit cycle, and the F(?) versus F(? + p) map will be a single point. For 
the more complex limit cycle resulting from the more complex limit cycle in Fig. 11.3, the 
plot will have two points, etc. This variant for producing a first return map is implemented 
in ForcedChaosTester.m. When running this program the length of the sinusoidal period 
must be specified in terms of the number of samples produced by the simulation, and an 
offset which sets the phase for sample selection must also be chosen. In this case the period 
is 189, i.e. 1000ms/(264.6 x 0.02 ms), where 0.02 ms is the time increment in the simula
tion, and a convenient phase is 1/4 of this (47), so samples are obtained at the peak phase 
of the forcing function. If this program is used to analyze the spike train generated when 
A = 0.007, you will obtain the first return map shown at the top of Fig. 11.5. (Note that 
several thousand returns are needed to produce a detailed map.) This return map clearly 
has the type of structure that is a signature of chaos. Furthermore, the Fourier power 
spectrum produced by the program is also consistent with the existence of chaos. Finally, 
running LyapunovHHW.m, which incorporates (11.6), shows that the Lyapunov expo
nent A = + 0.16, so neighboring trajectories diverge exponentially on average. As the time 
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Fig. 11.6 Chaotic spike train produced by a squid axon in response to sinusoidal modulation at 264 Hz 
(Everson, 1987). Variability in spike timing and amplitude are similar to those produced by eqn (11.6) in the 
previous figure. 

scale is milliseconds, this value of A will cause divergence by a factor of about e9 in 100 ms! 
Thus, all three criteria for chaos are satisfied, and it can be concluded that (11.6) produces 
chaotic spike trains over certain ranges of sinusoidal forcing. 

Although (11.6) represents a simplification of the Hodgkin-Huxley equations, it has 
been shown by similar simulations that the original equations do in fact exhibit chaotic 
dynamics when they are forced sinusoidally. Furthermore, Everson (1987) and others (see 
Degn et ai, 1987) have demonstrated chaotic spike trains in periodically stimulated squid 
axons. Chaotic data resulting from 264 Hz sinusoidal stimulation of a squid axon are 
plotted in Fig. 11.6 (Everson, 1987). There is reasonable qualitative agreement between 
these experimental data and the spike train produced by (11.6) and shown in Fig. 11.5. 

11.4 Implications of neural chaos 

In addition to the example above, many neural systems have been shown to exhibit 
chaotic dynamics under appropriate circumstances. What are the potential implications 
of this fact? The sensitivity to initial conditions in chaos implies lack of long-term pre
dictability when there is any uncertainty about the initial conditions (and there is always 
some measurement error in the laboratory!). If a neural preparation is in a chaotic regime, 
the experimenter will never be able to predict details of the spike trains beyond a rather 
brief interval determined by the Lyapunov exponent. This observation holds true 
regardless of the level of detail or number of ion channels that the scientist attempts to 
control in the preparation. There are only two possible alternatives: content oneself with 
detailed prediction only for a very brief period, or predict only the mean spike rates, etc., 
over a longer period. The same situation is faced by the meteorologist in attempting to 
predict the weather. Due to chaos in the atmosphere, detailed prediction of daily tem
peratures and precipitation is only reasonably accurate for about 4-5 days in advance. 
However, monthly means of temperature and precipitation can usually be predicted with 
considerable accuracy years in advance. Neuroscientists who believe that it is necessary to 
understand in detail all of the ionic currents of every neuron in a network to make pre
dictions should recognize that greater descriptive detail in a chaotic neural system will not 
generally lead to greater predictive power. 
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At the level of animal behavior, it has been noted that many small prey animals flee in 
highly erratic, unpredictable paths when chased (Humphries and Driver, 1970). Such 
behavior, which enhances the prey's chances of escaping, may well represent an adaptive 
utilization of neural chaos in motor control. This idea has been extended even further by 
Miller (1997) in an attempt to explain the evolutionary roots of creative intelligence. The 
basic notion is that dominant individuals in primate societies can enhance their control 
of subordinates by introducing a certain degree of unpredictability into their behavior. 
Such 'protean behavior' may have provided a basis for the evolution of creative thinking, 
because the rapid generation of many unpredictable alternatives is a necessary 
ingredient of creativity. It is therefore plausible that chaotic neural dynamics in some 
of the highest cortical areas of the frontal lobes may provide the generative element 
behind creativity. 

On a more philosophic level, what does neural chaos have to say about our own brains 
and thought processes? Although there is little direct evidence yet, it is likely that at least 
some of the neurons in our brains are in a chaotic dynamical regime some of the time. 
Indeed, there is already evidence for chaos among neurons in monkey cortex (Rapp et ai, 
1985), and simulations have suggested that cortical networks with recurrent excitation 
and inhibition may exhibit chaos (Van Vreeswijk and Sompolinsky, 1996). This may well 
be one source of unpredictability in human behavior. The implications of neural chaos go 
deeper than this, however. First, chaos may provide a limitation on each individual's 
ability to predict his/her own behavior in detail. Although we know very little about the 
neural processes involved in thinking or consciousness, we do know that they involve 
neurons that might sometimes operate in chaotic regimes. Even though the brain may be 
totally deterministic, therefore, we may sometimes have no idea why we suddenly perform 
an unexpected act or make a snap decision! Thus, the old free-will versus determinism 
controversy in philosophy may have its resolution in neural chaos: a totally deterministic 
brain may nevertheless produce behaviors that are not predictable either by that brain 
itself or by any other brain on the planet! 

11.5 Exercises 

1. Consider the FitzHugh-Nagumo equations (8.8) with the following input current: 

/input =0.85 + 0.07 sin(27r?/3.69) 

Modify the script FitzHugh.m to simulate the response to this input for as long a duration 
as computer memory will permit (chaos testing requires long time series). Test the 
resulting spike train for chaos, determining the first return map and the Lyapunov 
exponent. (You will have to paste the appropriate dynamical equations into a copy ot 
LyapunovExpt.m to do this.) 

2. Equations (10.2) for a simple bursting neuron produce erratic spike trains for inputs / 
near 0.2. Find a value of/that produces chaos in these equations, plot the first return map, 
and determine the Lyapunov exponent. (This will again require pasting the equations into 
a copy of LyapunovExpt.m.) 
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3. The data in Fig. 3.4 show that muscle force is only linear over part of its range. Because 
of this, Barenghi and Lakshminarayanan (1992) developed the following nonlinear 
muscle model and studied its response to sinusoidal stimulation: 

d.v 
d 7 ~ 
d.v 
d? ~ 

y 

95 5 j 
0.1 v - — x + -xi - — A-5 + A sin(27r0.2?) 

16 8 16 

Simulate these muscle equations for A=2,A = 8.0, and A = 8.905, for as long a temporal 
interval as possible. Plot the return maps and determine the Lyapunov exponents in each 
case. Which of these stimulus amplitudes causes chaos? (The authors suggested that the 
model might explain irregular muscle tremor.) 

4. The following three equations describe the Hindmarsh-Rose neuron model with 
adaptation, and they can exhibit very different behaviors under different conditions of 
stimulation. The equations are: 

dF , , 
= - F 3 + 3 V2 + R-Z + I dt 

dR 
~d7 
dr 
d? 

-R+ 1 - 5F : 

0.015(-- + 4(K+1.6)) 

where V, R, and z are respectively the voltage, the recovery variable, and the adaptation 
variable. Characterize the responses of this neuron model for three different levels of input 
current: (a) /=2.0; (b) 1=2.5; and (c) 7=3.0. You will need to combine Runge-Kutta 
simulations with all tests for chaos, etc. In your simulations, use a time increment 
A? = 0.04, and initial conditions V = —1; R = —1; z = 2.0 (these conditions will mini
mize some otherwise tedious transient effects). For each simulation show a plot of 300 ms 
of the spike train, and plots of the power spectrum and first return map. For the first 
return map you should use as long a simulation as your computer memory will permit in 
order to obtain between 200 and 500 return values. Determine the Lyapunov exponents, 
and indicate what type of dynamical behavior each value of/produces. 
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We have investigated the dynamics behind a range of neurons from the squid axon to 
bursting cells in neocortex. Fhis provides the basis for studying interactions between 
neurons that are synaptically interconnected. This chapter will explore the simplest such 
interactions, namely those between pairs of identical neurons connected by either exci
tatory or inhibitory synapses. It might be thought that few really novel results would 
emerge from such simple two-neuron systems, but there are surprises in store. For 
example, swimming behavior in the mollusk Clione is controlled by mutually inhibitory 
neurons that produce a prolonged swimming cycle in the absence of any excitatory drive! 
It will also be seen that thalamic bursting during slow wave sleep is synchronized by 
mutual inhibition rather than by excitation. 

In order to gain insight into the dynamical reasons for these phenomena, we shall first 
study a powerful mathematical simplification of interactions between a pair of neurons. 
This is the phase oscillator concept introduced by Cohen et al. (1982). Once the abstract 
phase oscillator concept has been developed, it will be shown to predict the behavior of 
coupled Hodgkin-Huxley neurons. An added benefit is the simulation and analysis of the 
neural swimming system of the mollusk Clione. The phase oscillator model will then be 
developed further by incorporating a more accurate description of synaptic interactions. 
This leads to the surprising prediction that mutual inhibition is the most effective method 
of synchronizing neurons. Finally, inhibitory coupling responsible for synchronizing 
bursting thalamic neurons during deep sleep will be analyzed. 

12.1 Phase oscillator model 

Many types of neurons generate an ongoing spike train or sequence of spike bursts 
in response to a constant stimulus. From a dynamical perspective, this means that 
such neurons generate a limit cycle oscillation in response to constant stimulation. If 
two such neurons are reciprocally coupled by excitatory or inhibitory synapses, we 
are confronted with the problem of interacting nonlinear oscillators. Although such 
coupled oscillators are extremely difficult to analyze with full generality, an elegant 
simplification with significant predictive power was discovered by Cohen et al. (1982). 
The key insight of Cohen et al. (1982) (sec also Rand et al., 1988) was that only the phase 
of each oscillator need be considered when the coupling between the oscillators is 
weak. The reason for this is that the amplitude and waveform of each limit cycle will 
be largely unaffected under weak coupling, although phase relations and frequencies 
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can be changed. These observations are evident in the discussion of phase shifting in 
Chapter 9. 

To develop the concept of a phase oscillator, let us consider two coupled oscillators, 
an abstraction of two interacting neurons. Each oscillator will be described by a single 
differential equation governing the rate of change of its phase 8 with time. For a single 
oscillator with no coupling, the equation is: 

— = u> so 0(0 = w?(mod 27r) (12.1) 

where w is the frequency of the limit cycle oscillation. The solution of this equation is 
modulo 27r because the phase is periodic over that range. Suppose now that two such 
oscillators are coupled together using the synaptic coupling H: 

d0, 
- r r = w, +77,(02- 0i) 
68 ( I Z 2 ) 

—^ = ui + H,(9l -8.) 
dt 

where LO\ and UJ2 are the frequencies of the two oscillators in the absence of coupling. H\ 
and H2 must both be periodic with period 27r for these equations to meaningfully describe 
phace coupling. The assumption that the coupling functions depend only on phase dif
ference is an approximation that is exact in the limit of weak coupling (Kopell, 1988; 
Ermentrout, 1994). As phase continuously varies during each cycle of the oscillation, it is 
only necessary to consider the phase difference between the two oscillators to determine 
whether they have a constant phase relationship. Let us define the variable </> = 92 - 9\ 
and generate a new equation by subtracting the first from the second equation in (12.2). 
The result is: 

4- = u2-u)i+H2(-(j>)-Hi(<j>) (12.3) 
d? 

Even without considering explicit forms for H\ and H2, we can obtain some very general 
resultsconcerning the effects of oscillator coupling in (12.3). First, however, two definitions 
are necessary. Two oscillators are phase locked when the phase difference between them is 
constant and independent of time. (This is 1 : 1 phase locking; 2 : 1,3: 1, etc. phase locking 
can also occur as in Fig. 9.12.) Two oscillators are synchronized if they are phase locked at 
zero phase difference. Given the definition of phase locking, a solution to (12.3) will be 
phase locked if and only if d(f>/dt = 0 is an asymptotically stable steady state. Applying the 
usual stability analysis, therefore, phase-locked solutions must obey the equation: 

u>2-uJi+H2(-4>)-Hl(4>)=0 (12.4) 

Asymptotic stability of the solution is guaranteed if: 

A[/Y2(-0)-//,(</>)]< 0 (12.5) 

where the derivative is evaluated at the equilibrium value of </>. Equation (12.5) is the one-
dimensional special case of a Jacobian. 
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Let us clarify these generalities by solving (12.4) and (12.5) for a particular choice of the 
H function. Cohen et al. (1982) chose the simplest function with period 27r, namely: 

H,((p) = a, sm(4> + o) (12.6) 

where the synaptic strength a, can vary for the two directions of coupling. The additional 
phase shift o > 0 is assumed to be produced by synaptic or conduction delays in the 
coupling (Kopell, 1988; Kopell and Ermentrout, 1988). The special case where a = 0 
considered by Cohen el al. (1982) describes coupling via electrical gap junctions between 
neurons or extremely rapid short-range coupling that produces a negligible phase shift. 
Two justifications may be offered for the choice of eqn (12.6). First, (12.6) is the lowest 
order in the Fourier series expansion of any 27r periodic function (Cohen et al., 1982; 
Rand et ai, 1988). Second, calculations of the //functions for both the Wilson-Cowan 
(1972) oscillator and the Morris-Lecar (1981) equations show that H assumes a form 
similar to (12.6) as a first approximation (Ermentrout and Kopell, 1991; Ermentrout, 
1994). The actual calculation of H involves averaging the effects of small perturbations 
over one cycle of the oscillation as a function of phase and is discussed in detail by 
Ermentrout and Kopell (1994). 

Substitution of (12.6) into (12.3) gives: 

— = UJ2 — uj] - a\ sin(0 + a) — a2 sin(</> — a) (12-7) 
d? 

where we have used the identity sin(-.v) = - sin(.v). Equation (12.4) for the phase-locked 
states now becomes: 

u>2 — u>\ - fl| sin(0 + a) - a2 sm((p — a) = 0 (12.8) 

The trigonometric identity sin(.v + y) = cos(.v) sin(v) + sin(.v) cos(v) transforms (12.8) 
into: 

u)2 - u>] - (</| + ct2) cos(o) sin(0) + (a2 - ct\) sin(rr) cos(0) = 0 (12.9) 

The condition for asymptotic stability of a phase-locked state may now be determined 
from (12.5): 

— [//•>(-0) - 7/| (</>)] = -(a2 - a\) sin(cr)sin(0) - (a\ + a2) COS(CT) cos(f/>) < 0 
d0 

(12.10) 

where 0 is a solution to (12.9). 
The general solution to eqn (12.9) can be written down (see 12.17 below), but much 

insight may be gained by considering several physiologically important special cases. The 
first case of interest occurs when the frequencies of the independent oscillators are equal, 
uj\ = UJI = UJ. As these frequencies are determined by external signals to the individual 
oscillators, it is easy to produce this condition physiologically. Equation (12.9) may now 
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be solved with the result: 

((a2 - ct\) sin(rj) \ 
0 = arctan [) )-L) ( 1 2 . 1 1 ) 

\ ( f l | + a2)cos(o)j 

Assuming that the synaptic delay 0 < a < 7r/2 and that a\,a2 > 0 (i.e. excitatory con
nections), three different solutions to (12.11) may be distinguished: 

0 = 0,7r for ci\ = a2; 

0 > 0 for a\ < a2; (12.12) 

0 < 0 for «i > a2; 

When a\ = a2 so that 0 = 0, the asymptotic stability condition (12.10) becomes: 

- (« , +fl2)COS(cr) < 0 (12.13) 

so this is an asymptotically stable steady state in which the two oscillators are synchron
ized. It is easy to show that the other steady state in this case, 0 = 7r, is unstable. In fact, the 
periodic nature of the arctan function guarantees that there will be two solutions to 
(12.11) in each of the cases listed in (12.12), but only the smaller, asymptotically stable 
value of 0 has been listed in the second and third cases. 

The remaining solutions to (12.11) in (12.12) will be particularly relevant to the study of 
lamprey swimming, as described in the next chapter. In the first case where ci\ < a2, 0 > 0 
is an asymptotically stable, phase-locked solution as long as (12.10) is satisfied. For 
example, suppose a2 = 2a\ and a = 2TT/25 (4% of a period). Now (12.11) gives 0 = 0.085, 
which is 4.9°, and inspection of (12.10) shows that this solution is asymptotically stable for 
any values of the coupling coefficients satisfying our conditions. As 0 = 92 — 9\, this 
phase-locked solution requires that 82 > 8\, so the second oscillator leads the first in this 
case. If coupling strengths were reversed so that ct\ > a2 > 0, it is easy to see that the 
phase-locked solution 0 < 0 becomes asymptotically stable. In either case, the frequency 
at which the oscillators synchronize is given by the rate of change of phase from (12.2): 

d9\ 
- - • = w + ai sin(0 + a) (12.14) 
d? 

where wis the common frequency of the uncoupled oscillators. For the particular param
eters discussed above 0 = 0.085, sin(0 + a) = 0.33 so the coupled oscillators lock at a 
frequency greater than their uncoupled frequencies. This frequency increase due to 
coupling is not surprising given that the coupling, although weak, is excitatory. This 
demonstrates that a short synaptic delay in oscillator coupling plus an asymmetry in 
coupling strength leads to a phase-locked solution in which one oscillator lags the other 
but the oscillation frequency is increased. 

Fhe solutions to eqn (12.9) above were based on the assumption that UJ\ = UJ2 = u>. As a 
second important example, suppose that the frequencies are not identical but the coupling 
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strengths are, so a\ = a2 = a. The solution of (12.9) is now: 

0 = arcsinl -
la cos CT 

if 
UJ2 — u>\ 

2acos(a) 
< 1 

and the phase-locked frequency in (12.2) will be: 

d0. 
d? 

= UJI + c/sin(0 + a) 

(12.15) 

12.16) 

The inequality in (12.15) arises from the fact that the sine function is bounded by ± 1. This 
means that a phase-locked solution to (12.9) is only possible if the frequency difference 
between the uncoupled oscillators is sufficiently small relative to the sum of the coupling 
coefficients multiplied by cos(cr). When this is not satisfied, the two oscillators will drift in 
relative phase, as we shall see shortly. Assuming that the inequality is satisfied, (12.15) will 
have two solutions differing in phase, but only one will be asymptotically stable. If 
u)\ = ui2 the oscillators will be synchronized if a > 0. On the other hand, if the connections 
between oscillators are inhibitory, then the coupling coefficient a < 0. Now when u>\ = ui2 

the asymptotically stable phase solution will be 0 = n assuming that o < TT/2 (see eqn 
12.10). Thus, inhibitory coupling leads to phase locking in antiphase rather than syn
chronization in this case. 

Before considering several neural examples, let's note the most general solution to 
(12.10), which is: 

arcstn 
(UJ2 

V A 
+ 0 where 

i = \l(a2 + ai) (costr) + (a2 - ai) (sintr) 

(a2 - a\) sincr^ 

[12.17) 

0 = arctan 
a2 + a\ )coso 

This equation will again have two phase-locked solutions, one unstable and one 
asymptotically stable, if \UJ2 - UJI\/A < 1. It can be shown that (12.11) and (12.15) are 
special cases of (12.17). 

12.2 Pairs of synaptically coupled neurons 

This discussion of oscillator interactions has employed the very general phase oscillator 
approach, and the choice of the coupling function 77(0) in (12.6) may seem too simple to 
provide physiologically relevant insights. To see just how well the phase oscillator model 
actually works, let us consider the simplest possible physiological example: two neurons 
reciprocally coupled by either excitatory or inhibitory synapses. 

To examine the effects of synaptic interactions, it will be convenient to begin with a 
neuron incorporating a simulated /A current described by eqn (9.10). As this neuron can 
fire spikes at arbitrarily low rates, this will enable us to explore the effects of spike rate on 
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synaptic interactions most easily. Synaptic inputs can be added to this equation using the 
formulation from Chapter 2. If the time constant of the synaptic potential is rsyn and its 
equilibrium potential £syn, synaptic inputs to (9.10) produce the equation: 

dV 
— = -{ l7 .81+47.58F+33.8F 2 }(F-0 .48) -26 /? (F+0.95) + / 

-kg(V-Em) 
dR 1 
d? 5.6V *+ l -29K+0 .79 + 3.3(F + 0.38ry 

qY=J_ 
d? rsyn 

_? = _L 
dt Tsvn 

where 

{-f+Hsttp(vpn-n)) 

i-g+f) 

-r^step(-V) 
1 if X > 0 
0 if .v < 0 

The synaptic potential is generated by variation of the synaptic conductance variable g 
with time constant rsyn. Changes in the conductance g are driven by the variable/, which is 
in turn driven by the voltage of the presynaptic neuron, Vpre, using the step function 
/7step(.x). 7/step(-x) = 1 whenever Fpre > fi, the threshold for postsynaptic conductance 
changes. The magnitude of the postsynaptic potential is controlled by the parameter k and 
the equilibrium or reversal potential £syn. For these simulations, let us choose the values 
Tsyn = 2ms and fi = —0.20 (i.e. — 20mV). For excitatory synapses, Esyn = 0, while at 
inhibitory synapses £syn = —0.92 (i.e. -92 mV). 

The use of two differential equations to describe the conductance change at a synapse 
was introduced by Rail (1967,1989) and is now in common use. From (2.10), it can be seen 
that two such equations will produce a response proportional to (?/Ts

2
yn)exp(-?/Tsyn) 

when the stimulus is a brief pulse, and this is Rail's alpha function. In Runge-Kutta 
simulations, direct computation of the two differential equations for the alpha function is 
about twice as fast as direct use of the exponential. Normalized plots of the synaptic 
conductance change g(t) for three different values of rsyn are shown in Fig. 12.1. As can be 
seen and easily derived, the peak of the alpha function occurs at ? = Tsyn, so fast and slow 
synaptic potentials can be created by varying this parameter. Although employing two 
differential equations to describe synaptic conductance changes might seem unnecessarily 
complex, it has been shown to be crucial to the understanding of certain neural inter
actions (Van Vreeswijk et ai, 1994). The reason is that conductance changes described by 
the alpha function will peak after the end of the initiating spike if rsyn is sufficiently long 
(see Fig. 12.1), and this is typical physiologically. As spikes have a brief duration of about 
1.0 ms, 77step(.v) will produce about a 1.0 ms pulse (gray rectangle in Fig. 12.1) to thed//d? 
equation if the threshold for synaptic activation, fi, is set to a value midway along the 
rising phase of the spikes. This generates a very smooth alpha function and avoids the 
need to store a record of the time at which each incoming spike arrived at the synapse. 
Note also that the area under the alpha function is identical for all values of rsyn. 
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Fig. 12.1 Synaptic conductance changes produced by the alpha function for r = 1, 2, and 5 ms. The rectangle 
indicates the duration of the inducing spike. 

Putting action potential generation and synaptic inputs together in (12.18) creates what 
is known as an isopotential neuron. This is a cell in which the membrane potential V 
remains identical throughout both the soma and the dendritic tree. More realistic models 
with multiple dendritic compartments will be developed in Chapter 15. Nevertheless, 
isopotential neurons are in common use in neural modeling (e.g. Wang and Rinzel, 1992; 
Skinner et ai, 1994; Rolls and Treves, 1998), and a lot can be learned by studying them. 

Let us now explore phase locking between two neurons, each described by eqn (12.18). 
The MatLab program EPSPinteractions.m simulates the case where the two are reci
procally coupled by excitatory synapses, with each receiving an independent input /. 
Running the program with stimulus levels of 0.4 and 0.3 for the two neurons, and exci
tatory coupling strength k = 0, shows that the two neurons respond at independent fre
quencies uj] = 37 Hz and u>2 = 23 Hz. Rerunning the program with the same two stimuli 
but with k = 4 produces phase locking at 45 Hz with the neuron receiving the weaker input 
exhibiting a modest phase lag (about 27r/7) relative to the other. If stronger EPSPs are 
produced by setting k = 6, phase locking at 52 Hz is obtained with a shorter phase lag of 
about 27r/10. Fhese trends are predicted by the phase oscillator equations (12.15) and 
(12 16). Furthermore, (12.15) predicts that phase locking will be impossible if the exci
tatory coupling is too weak. You can verify this by running EPSPinteractions.m with 
stimuli of 0.4 and 0.3 but coupling k = 2. Thus, the qualitative predictions of the phase 
oscillator model are supported by simulations of two interacting neurons, although 
quantitative details differ due to the generality of the model. 

The phase oscillator model also predicts that two neurons with inhibitory coupling will 
phase lock about 180° out of phase. This can be tested using an inhibitory synapse in 
(12.18) by setting £syn = -0.92, which has been done in MatLab script IPSPinter-
actions.m. The time constant has been shortened to rsyn = 1 ms in this simulation for 
reasons that will become clear shortly. If the script is run with stimulus levels of 1.1 and 
1.0, the uncoupled neurons (k = 0) will oscillate at u/| = 118 Hz and UJ2 = \07WI 
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respectively. Setting the inhibitory strength k = 5 in the program now produces phase 
locking at 96 Hz at a phase difference near IT, but weak coupling with k = 2 again fails to 
produce phase locking. This phase difference, reduction in frequency, and lack of phase 
locking for weak coupling are all predicted by eqns (12.15) and (12.16) if the coupling 
coefficient a < 0 to represent inhibition. 

12.3 An inhibitory swimming network 

Although these examples of two coupled neurons certainly elucidate the nature of phase 
locking, it might seem hard to imagine that two interacting neurons could actually pro
duce functionally significant behavior. It is therefore striking that the mollusk Clione 
swims by controlling each of two wing-like flaps using just two types of neurons: one for 
dorsal flexion and the second for ventral flexion (Satterlie, 1985). Even more striking is the 
fact that these neurons are mutually inhibitory, yet they can generate an ongoing oscil
lation in response to a brief stimulus. Figure 12.2A shows the alternation of one spike per 
cycle in the antiphase firing of one dorsal and one ventral neuron (Satterlie, 1985). If you 
run the MatLab simulation Clione.m with a stimulus of 0.5 and inhibitory coupling 
strength k = 9, you will produce the spike trains depicted in Fig. 12.2B. The two neurons 
spike in antiphase, each generating one spike per cycle just as in the Clione data. Even 
more surprising is the fact that stimulation was only delivered to one neuron for 1.0 ms 
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Fig. 12.2 Action potentials in dorsal and ventral neurons controling swimming in Clione. Data in A were 
triggered by a brief stimulus at the arrow (reproduced with permission. Satterlie. 1985). Simulation in B was 
triggered by a brief stimulus to the dorsal neuron (horizontal bar). Note hyperpolarization produced by 
mutual inhibition (arrows). 
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(short black bar), so reciprocal inhibition here produces a self-perpetuating swim cycle! If 
the inhibitory coupling is eliminated by setting k = 0, just one spike will be triggered in the 
stimulated neuron, but there will be no further neural activity. The Clione cycle rate (near 
1 Hz) is much slower than the simulation, but individual Clione spikes are 50-100 ms in 
duration, so all of the model time constants could simply be scaled to fit the data. 

How can reciprocal inhibition with no apparent source of excitation produce ongoing 
bursting during Clione swimming? The key to the answer lies in the fact that Hodgkin-
Huxley type neurons described by eqn (9.7) have been used in this simulation. These 
equations have been coupled by adding the two synaptic conductance equations from 
(12.18) to each: 

%= — (-f+Hslep(vpre-n)) 

dt T-Syn 

d? r s y n 

[12.19) 

where 

u i \ - I l if -Y > ° > W A ) - j n i f j c < Q 

In addition, the synaptic current term -g( V - £syn) with £syn = -0.92 has been added to 
the dV/dt equation in (9.7). Fhe mechanism underlying Clione swimming can now be 
obtained from an examination of the phase plane for eqn (9.7). First, however, let us 
observe another surprising phenomenon: if you use a hyperpolarizing stimulus of -0.2 
with an inhibitory gain of k = 9, Clione.m will again generate an ongoing swimming 
rhythm, and this has also been observed experimentally (Satterlie, 1985)! This provides 
the key to understanding the mechanism of rhythm generation. If the neurons are 
uncoupled by setting k = 0, a hyperpolarizing stimulus of -0.2 will produce one spike 
following termination of the hyperpolarization, as shown in Fig. 12.3A. As indicated, 
there is a postinhibitory rebound (PIR) of the membrane potential following hyperpo
larization. Spike generation via PIR can be understood by examining the phase plane for 
(9.7). As shown in Fig. 12.3B, the hyperpolarizing stimulus depresses the dF/d? = 0 iso
cline (only a portion of which is shown) so that the asymptotically stable resting state R is 
shifted downward to the hyperpolarized point H. As all equilibria between R and H are 
asymptotically stable, V simply drops to the value at H. When the hyperpolarization is 
abruptly terminated, the equilibrium point immediately jumps back to R, but the system 
trajectory is still at H. As this is a region of the phase space where d V/dt is very large but 
dR/dt = 0, the trajectory must move in the direction indicated by the arrow, thus gen
erating one spike before returning to rest at R. This is the explanation of PIR spike 
generation in (9.7). Postinhibitory rebound in the squid axon was described by Hodgkin 
and Huxley (1952) under the rubric anode break excitation. 

The explanation of the Clione swimming rhythm should now be clear. Each time one 
neuron spikes, the brief hyperpolarizing IPSP in the other cell (arrows in Fig. 12.2B) 
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Fig. 12.3 Initiation of a spike in (9.7) via postinhibitory rebound (PIR). The phase plane in B shows that 
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produces the system trajectory shown. 

results in postinhibitory rebound, which generates a spike, so the process repeats itself. In 
order to generate PIR, it is crucial that the IPSP be brief in duration and sufficiently 
strong, as otherwise the hyperpolarized cell will simply track the slowly moving equili
brium point (which is always asymptotically stable in this case) back to rest. In Clione, 
each IPSP is of about the same duration as each spike (100 ms), so the simulation of Clione 
has an inhibitory time constant rsyn = 1.0 ms, the duration of spikes produced by (9.7). If 
the value is changed to rsyn = 1.5 ms and Clione.m is rerun with k = 9, no rhythm can be 
generated at any stimulus intensity, because trajectories simply track the asymptotically 
stable equilibrium following stimulus termination. 

Reciprocal inhibition without a source of excitation can thus produce an antiphase 
neural oscillation provided that the neurons involved exhibit PIR and the IPSPs are 
sufficiently brief, being of about the same duration as the spikes themselves. These 
physiological conditions are fulfilled by Clione (Satterlie, 1985) and by our model. Note, 
however, that inhibitory coupling between two neurons described by (12.18) will not 
produce ongoing swimming, because these neurons do not exhibit a PIR. This is a con
sequence of the shape of the isoclines in the phase plane shown in Fig. 9.9. 

This unusual mode of PI R rhythm generation was predicted by Perkel and Mulloney in 
1974 based on mathematical simulations. So here is another example in which nonlinear 
dynamics produced a counter-intuitive prediction that was subsequently verified by 
neurophysiologists. Spike generation via PIR has also been observed in mammalian and 
human neocortical and thalamic neurons (Foehring and Wyler, 1990; Crunelli and 
Leresche, 1991; Silva et ai, 1991), and its role in sleep synchronization will be examined 
shortly. A final note on Clione: as the resting state is asymptotically stable throughout the 
swimming cycle, hysteresis switching can occur between the swimming limit cycle and 
rest. Such switching requires a relatively slow external inhibitory input, however, as rapid 
inhibition would simply reset the phase of the oscillation. Thus the Clione swimming 
mechanism has a form of short-term memory built in. 
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12.4 Inhibitory synchrony 

Thus far, neural simulations have verified the predictions of the phase oscillator model. 
However, the phase oscillator model does fail in some surprising ways. If EPSPinter
actions.m is run with f = 0.7,12 = 0.65, and synaptic strength k = 8, the two neurons will 
phase lock at 182 Hz (well above the free running frequencies as expected), but phase 
locking will be in antiphase with a lag near tr. So much for excitatory interconnections 
causing neural synchrony! There is one final surprise in the analysis of phase locking. Up 
to this point, inhibitory coupling has caused phase locking about 180° out of phase, and 
this is crucial to the functioning of the Clione swimming network. However, several 
neural modeling studies have demonstrated that near perfect synchronization is actually 
more typical of reciprocal inhibition (Lytton and Sejnowski, 1991: Wang and Rinzel. 
1992, 1993; Traub et ai, 1996), and reciprocal inhibition appears to be the physiological 
basis of synchronization in a number of systems (Aram et ai, 1991; Steriade et ai, 1993; 
Kim et ai, 1997). To see that reciprocal inhibition can lead to synchrony, change the 
inhibitory time constant to rsyn = 2 ms in IPSPinteractions.m and run the program with 
I] = 1.1, 7> = 10, and synaptic strength k = 5. Whereas out-of-phase oscillations were 
obtained above when rsyn = 1 ms, the longer synaptic time-constant produces the almost 
perfect synchrony evident in Fig. 12.4. (The very slight phase lead of the top neuron is due 
to its stronger input current; it vanishes if f = 1.05.) 

What can explain the counter-intuitive observations that reciprocal excitation may 
produce antiphase locking, while reciprocal inhibition may result in synchrony? Wang 
and Rinzel (1992, 1993) found that slow synaptic conductances plus PIR were sufficient 
to produce inhibitory synchrony. However, the inhibitory synchrony evident in Fig. 12.4 
occurs between two neurons described by eqn (9.10), so neither exhibits PIR. Thus, the 
time course of the synaptic conductances seems to be the prime determinant of inhibitory 
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synchrony. Following this lead. Van Vreeswijk et al. (1994) developed an elegant expla
nation of excitatory and inhibitory phase locking that shows how 7-syn governs the stability 
of phase-locked solutions. As developed above, the phase oscillator model makes the 
assumption that synaptic interactions can be described by an instantaneous pulse with a 
synaptic delay a. This assumption is implicit in the description of 77(0) in (12.6). However, 
it is evident from the various alpha functions plotted in Fig. 12.1 that this approximation 
is reasonable only when rsyn is very small. For large rsyn the resultant synaptic con
ductance change will extend not only throughout one cycle of the oscillation, but it may 
produce a long enough tail to extend across many cycles. 

Van Vreeswijk et al. (1994) sought to retain the simplicity and elegance of the original 
phase oscillator model while improving it by incorporating the effects of synaptic con
ductance changes that persist over time. Fhey chose the following alpha function P(t) to 
describe the time course of postsynaptic effects: 

V s y n , 

where k is the synaptic strength, being positive or negative for excitatory or inhibitory 
synapses respectively. The factor (1/Ts

2
yn) guarantees that the area under the alpha 

function will be unity for all values of rsyn. Equation (12.20) can be derived from (12.19) by 
removing the step function from the df/dt equation and replacing it with appropriate 
initial conditions (see Chapter 2)_. A new phase interaction function 77syn(</>) can now be 
computed from the sin(</>) interaction function of the phase oscillator model in (12.6) by 
convolution with P(t) (see Chapter 2): 

H,yM=Arl sin(27rW(0-/))?expff^-)d' ( 1 2 - 2 r 

' syn JO \t"syn/ 

This formula states that if the effect of an instantaneous pulse is given by the simple 
periodic function sin(27rur/>) with frequency UJ, the effect of a synaptic potential produced 
by (12.20) is computed by integrating it across an infinite number of cycles of the oscil
lation. The integral in (12.21) can be solved exactly using integral tables (Gradshteyn and 
Ryzhik, 1980) or a symbolic mathematics program with the result: 

k{\ - (2itujTSyn)
1\sm(2TTuj(t>)-4-itkujTsv„cos(2iTuj(j)) „ , . , , 

HwW = 7—— -r= : (12.22) 
[1 + (2ITUJTSV„) \ 

The basic phase oscillator equation (12.3) shows that we need to evaluate [77syn(—0)-
Hsyn(4>)}. Substituting (12.22) instead of (12.6) into (12.3) yields: 

df> 
d7 

-2k 1 — (2vTWTsyn)" sin(27ra;<? 

+ (2TTUJTSV„)2\ 

where it has been assumed that uj] = UJ2 = UJ. 

' 12.23) 
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So long as 27rursyn == 1, it is apparent from inspection that the equilibrium states of 
(12.23) occur for 0 = 0, n. To determine the stability of these states, we must compute the 
one-dimensional Jacobian by differentiating the right-hand side of (12.23) with respect to 
0 and evaluating the result at 0 = 0, tr. This calculation shows the synchronized state 
0 = 0 to be asymptotically stable if: 

-k[l - (2irujTsyny\ <0 (12.24) 

For inhibitory coupling k < 0, so synchronization will occur if: 

Tsyn>~]- (12.25) 
2TTUJ 

Thus, inhibitory synchronization results when the synaptic time constant is large, thus 
causing a slow conductance change. Inhibitory coupling only leads to asymptotic stability 
at phase 0 = n if the inequality in (12.25) is reversed, indicating that the inhibitory 
conductance change must be very fast. This is why a short synaptic time constant 
Tsyn = 1 ms was used in the program IPSPinteractions.m to produce antiphase locking, 
while rsyn = 2 ms produced the inhibitory synchrony in Fig. 12.4. 

For excitatory interconnections k > 0 in the phase oscillator model, and this results in a 
reversal of the inequality in (12.25) for synchronization. Thus, only brief EPSPs will 
produce synchrony, while longer ones will cause phase locking at 0 = IT. From their 
analysis plus modeling studies, Van Vreeswijk et ai (19^4) conclude: Tf the rise time of the 
synapse is longer than the duration of an action potential, inhibition not excitation leads 
to synchronized firing.' (p. 313). As this is generally the case in the nervous system, 
inhibition appears to be the most common mechanism of synchronization. Recently, 
Ringel et al. (1998) have shown that inhibitory networks can also generate propagating 
waves of neural activity under certain conditions. 

The qualitative reason that slow IPSPs lead to synchronization of mutually inhibitory 
neurons is roughly the following. After each neuron fires, it generates a slow rising but 
prolonged IPSP that prevents the other neuron from firing. The only stable solution is 
then for the two neurons to fire synchronously, thereby avoiding one another's slowly 
rising IPSPs. This theme is illustrated at the top of Fig. 12.5, where spikes (black vertical 
bars) generate the IPSPs in their inhibitory partners as shown by the arrows. When the 
IPSPs are very fast, however, each neuron prevents the other from firing at the same time, 
so anti-phase locking is the only possible solution. An analogous explanation, depicted at 
the bottom of Fig. 12.5, shows why slow EPSPs produce out-of-phase locking: each 
neuron of the pair will be stimulated to fire at the peak of the EPSP received from its 
neighbor. 

12.5 Thalamic synchronization 

Fhe thalamus, which contains cell groups that relay information from sense organs to the 
cortex, becomes capable of generating synchronized bursts of activity during deep sleep 
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Fig. 12.5 Schematic explanation of inhibitory synchronization (above) and excitatory antiphase locking 
(below) between pairs of neurons. Vertical bars represent spikes that produce the gray IPSPs (above) or 
EPSPs (below) indicated by arrows. 

and also during certain epileptic seizures known as absence seizures. In the LGN (lateral 
geniculate nucleus), which receives input from the retina and relays it to visual cortex, 
these synchronized oscillations are the result of interactions between the LGN relay cells 
and cells in the PGN (peri-geniculate nucleus) (Crunelli and Leresche, 1991;Steriadee?a/., 
1993; Kim et ai, 1995, 1997). As shown by the circuit diagram in Fig. 12.6, axon col
laterals of the relay cells (E) excite neurons in the PGN, and these PGN neurons (I) in turn 
provide feedback inhibition onto the relay cells. This is a network with feedback inhibi
tion between adjacent relay cells, so one might intuitively feel that synchronized oscilla
tions should be impossible. However, several different factors that we have already 
analyzed combine to produce stable oscillations and thalamic synchrony during deep 
sleep (when there is no retinal input). 

A dynamical characteristic of the individual neurons in Fig. 12.6 provides the first key 
to network behavior. During deep sleep the membrane properties are altered (presumably 
by modulatory neurotransmitters) so that the individual neurons produce a burst of 
spikes as a result of postinhibitory rebound (PIR). As these bursts of spikes are triggered 
by /T currents, let us adapt the bursting neuron in (10.3) to simulate LGN and PGN cells 
during sleep. The only change necessary is to reduce the magnitude of the change in Ca2+ 

conductance in the dX/dt equation. Thus, all other equations in (10.3) remain the same, 
except that the dX/dt equation is changed to: 

dLV 

d? : 30 ( -X+6.65(F+0.86)(F + 0.84)) 12.26) 

the only change being a reduction of one parameter to 6.65. This makes the equilibrium 
point of the system asymptotically stable so that the model neuron is no longer an 
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Fig. 12.6 LGN-PGN inhibitory feedback network. Excitatory synapses are shown as arrows and inhibitory 
as solid circles. Note the presence of inhibitory connections between /, and l2 (gray). 
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Fig. 12.7 Postinhibitory rebound (PIR) bursting. The data in A (spike amplitudes clipped) are from a PGN 
neuron (reproduced with permission. Kim et al., 1997), which may be compared with the neural simulation in 
B Brief hyperpolarizing stimuli are plotted below each potential record. 

endogenous burster. However, the model incorporating (12.26) will generate a burst of 
spikes caused by PIR. A model PIR burst is compared with data for an LGN neuron in 
Fig. 12.7. Fhe script LGN2cell.m with both synaptic conductance factors equal to zero 
reproduces this result. 

The interaction between one LGN cell (E|) and one PGN cell (I|) constitutes the next 
ingredient in the network dynamics. The script LGN2cell.m contains equations for both 
E| and I| with synaptic connections incorporated using (12.19). If you rerun LGN2cell.m 
with the excitatory synaptic strength kE = 2 but the inhibitory strength k] = 0, /| will 
generate a burst as a result of EPSPs from E|. Running the program again with kE = 2 
and A| = 20 now completes the inhibitory feedback loop, and the two neurons generate a 
continuing oscillation in response to the initial brief hyperpolarization of E|. The 
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Fig. 12.8 Synchronized bursting in the LGN-PGN network of Fig. 12.6. Brief stimulation of neuron /| 
triggers a synchronized network oscillation at about 2 Hz. 

oscillation is similar to the top two spike trains in Fig. 12.8. The following sequence of 
events cause this oscillation: E| excites F to fire a spike burst, but this leads to strong 
hyperpolarization of E] due to IPSPs from I|. As a result, E| generates another burst of 
spikes triggered by PIR, and thus the sequence repeats itself. 

The discussion of negative feedback in Chapter 4 showed that oscillations generally 
require delays in the feedback loop, and the same is true for the interactions between E| 
and I|. In the simulation, rsyn = 40 ms, which is within the range typical of GABAb 
inhibition in the LGN and PGN (Crunelli and Leresche, 1991 Kim et ai, 1997). Reducing 
the synaptic time constant to rsyn = 10 ms and running LGN2cell.m with kE = 2 and 
k] = 20 will abolish the oscillation. In this negative feedback loop, therefore, it is the slow 
IPSPs that produces the feedback delay necessary to permit oscillations to occur. 

The synchronized bursting of the entire LGN-PGN network in Fig. 12.6 can now be 
understood. The spike trains in Fig. 12.8 show the result of activating the entire synap-
tically coupled network with a brief 50 ms depolarizing pulse delivered to F. As long as 
rsyn is in the range 40-70 ms (see Exercise 6), the pulse will trigger an E|-I i oscillation as 
described above. The inhibitory interconnections from F to E2 and F cause them to begin 
bursting about 300 ms later as a result of PIR. Synchronization among all four neurons is 
now achieved as a result of the inhibitory cross-coupling with slow inhibitory time con
stants in agreement with (12.25). This can be seen by running LGNsynchrony.m with 
^E = 2,k] = 20, and I-I synaptic weighting k\\ = 4 (this script takes several minutes to 
run). Note that no attempt has been made to adjust parameters to the detailed char
acteristics of LGN or PGN neurons, so the oscillations occur at a lower frequency (about 
2 Hz) than is produced by models with appropriately tailored parameters (e.g. Destexhe 
et ai, 1993). However, synchronized sleep LGN oscillations can occur at rates compar
able to the model (Steriade et ai, 1993). Also, the bursting observed experimentally does 
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eventually die out, while the model bursting continues indefinitely. However, burst ces
sation can be explained by the operation of an additional Ca2+ current, /CAN (Partridge 
and Swandulla, 1988; Bal and McCormick, 1993; Destexhe et ai, 1993). This current has 
also been reported to increase oscillation frequency in model simulations (Destexhe et ai, 
1993). 

The LGN-PGN network in Fig. 12.6 is, of course, only a small segment of the entire 
neural ensemble within these thalamic nuclei. However, it would be easy to extend the 
network by incorporating a large spatial array of adjacent E and I neurons. Without even 
doing so, however, it is possible to draw one more interesting conclusion about the 
dynamics of such a network. Once E2 and F begin firing, one would expect inhibition 
from F to trigger PIR bursting in neighboring E3 and I3 of an extended network. This 
sequence of events would repeat itself, leading to a traveling wavefront of neural acti
vation sweeping across the network. This is exactly what is observed experimentally 
following localized stimulation of the LGN-PGN network (Kim et ai, 1995)! 

12.6 Synopsis of phase locking 

As many aspects of phase locking and neural synchrony have been explored in this 
chapter, it may be useful to summarize key points. The phase oscillator introduced by 
Cohen et al. (1982) has proven extremely valuable in providing explanations of many 
aspects of neural phase locking. The simplest phase oscillator model (12.3) uses H(<p) 
from (12.6) and assumes that synaptic effects may be described by pulses following a delay 
0. This model predicts many aspects of phase locking and synchrony in more detailed 
neural networks as long as the synaptic time constant is sufficiently fast. If postinhibitory 
rebound (PIR) is included, this model predicts the anti-phase locking and ongoing 
oscillation of the Clione swimming network as shown in Fig. 12.2. 

The surprising fact that neural synchronization is frequently due to reciprocal inhi
bition rather than to excitation can be explained by an extension of the phase oscillator 
model. As shown by Van Vreeswijk et al. (1994), replacement of instantaneous synaptic 
events with ones described by the alpha function in (12.20) leads to counter-intuitive 
predictions that depend upon the synaptic time constant: when rsyn is sufficiently large, 
reciprocal inhibition causes synchrony, and mutual excitation causes anti-phase locking. 
All these aspects of the mathematical analysis were finally applied to the LGN-PGN 
network and shown to predict the synchronized, PIR-driven bursting that is actually 
observed in slow wave sleep. The model developed here is similar in spirit to several in the 
literature (Wang and Rinzel, 1993; Destexhe et ai, 1993, 1994). It is interesting that 
similar synchronized bursting occurs in epileptic episodes known as absence seizures. The 
surprising conclusion is that these seizures might best be controlled by reducing the 
strength of reciprocal inhibition in thalamic networks (Gloor and Fariello, 1988; Crunelli 
andLeresche, 1991; Steriade et al, 1993; Kim et al, 1997). 

12.7 Exercises 

1. Use the program EPEPinteractions.m to determine the characteristics of phase locking 
when the two neurons are stimulated by currents I\ =0.5 and I2 = 0.4. (a) Determine the 
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spike rates of both neurons for coupling strengths k = 0,4, 6. Also estimate the phase lag 
in each of these cases, (b) Determine the smallest value of k (accurate to 0.1) that is just 
sufficient to produce phase locking. Set k = 4 and f = 0.5. Now determine the smallest 
value of I2 (to the nearest 0.01) that will produce phase locking and find the frequency. 
Compare your results with the predictions of the phase oscillator model in (12.15) and 
(12.16). 

2. Explore the conditions governing swimming in Clione using the script Clione.m. First 
determine the minimum synaptic coupling strength k (to the nearest 0.1) that will produce 
ongoing swimming. Next determine the largest time constant rsyn (set at 1.0 ms in the 
program) that will still result in swimming. Do this for both the minimum synaptic 
coupling strength that you just found and for k = 10 and 20. Finally, determine the spike 
frequency for each of these three values of k. Does spike frequency vary significantly as a 
function of A:? Suggest a dynamical explanation based on postinhibitory rebound. 

3. Consider the following equations for three coupled phase oscillators with identical 
frequency inputs: 

~ = UJ + H](92-9I) 
dt 

69 
—=- = UJ + H2(9] - 82) + Hi(63 - 82) 
dt 

d9 
-P- = u + H2(62 - 93) 
dt 

Assume that the coupling functions H have the forms: 

H](fj) = a sin(0) and H2(<j>) = b sin(0) 

First, reduce the system to two equations in the phase differences 0i = 92 - 9] and 
02 = $i - 02, Determine the possible phase-locked states and their stability as functions 
of a and b. 

4. Instead of the alpha function P(t) in (12.20) suppose that the postsynaptic time course is 
given by an exponential function: 

k (-t 
P(t)= exp 

Tsyn VTsyn 

What is the phase coupling equation that is produced by this function (i.e. the analog of 
12.23)? For both excitatory (k > 0) and inhibitory (k < 0) coupling,determine what phase-
locked states are asymptotically stable. 

5. Determine the value of rsyn (nearest 0.1 ms) at which IPSPinteractions.m switches from 
antiphase to synchronous oscillations. For all simulations let the two stimulating currents 
be 1.07 and 1.0. (a) For an inhibitory synaptic strength k = 5, what is the transition value 
°f Tsyn? (b) If k = 10, how does the value of Tsyn for synchronization change? Interpret your 
results based on synchronization models developed in the text. 
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6. Use the script LGN2cell.m to explore the conditions on synaptic connection strengths 
and time constants necessary for this two-neuron, negative feedback loop to generate 
sustained oscillations, (a) For kE = 2, k] = 20, determine the maximum and minimum 
values of rsyn (nearest ms) that will support a bursting limit cycle, (b) Keeping rsyn = 40 ms 
and A:E = 2, what is the smallest value of k] (to the nearest integer) that will sustain a limit 
cycle? Explain your results in terms of underlying dynamical principles. 

7. Use LGNsynchrony.m to determine how network parameters affect synchronous 
bursting, (a) Let kE = 2, ki = 20, and ku = 4 (the I-I cell synaptic connections). Deter
mine the smallest value of rsyn (nearest ms) that permits synchrony, (b) For the same 
synaptic weights, determine the largest value of rsyr (nearest ms) that permits synchrony, 
(c) What type of solution is obtained for the following parameters: kE = 2, k\ = 4, and 
ku = 20, Tsyn = 40 ms? (Note that this program takes about 2 min to run each simulation.) 



13 Swimming and traveling waves 

The analysis of phase locking and synchrony in the previous chapter provides a basis for 
understanding many motor control systems. One such example has already been dis
cussed: the swimming network of Clione. Indeed, phase-locked limit cycles generated by 
neural networks form the basis of virtually all rhythmic motor behavior: breathing, 
swimming, running, chewing, etc. (Stein et ai, 1997). Our focus will be on swimming, as 
some of the most elegant and thorough analyses of motor control lie in this area. The 
reason for this is straightforward: a swimming animal typically has a density roughly 
equal to that of the surrounding water, so maintenance of balance against the force of 
gravity is not a factor in swimming. Balance is a major problem for walking quadrupeds 
and even more so for bipeds, as the tumbles of any young child demonstrate. 

We shall first consider the control of swimming by neural circuits in the spinal cord of 
the lamprey, a primitive aquatic vertebrate rather like an eel (lampreys are technically 
cyclostomes, not fish). Lamprey swimming involves not just the generation of nonlinear 
oscillations in individual segments of the spinal cord but also the coordination of these 
oscillators along the cord so as to generate smooth traveling waves of neural activity 
propagating along the body. The conditions for generation of traveling waves lead to a 
formalism that can also be applied to phase locking in quadruped locomotion. 

The chapter closes with a more detailed simulation of swimming in the marine mollusk 
tritonia. The purpose of this second example is to show that neural network behavior may 
profitably be studied at different levels of physiological and mathematical detail. Thus, 
the neurons in the lamprey network will be described at the spike rate level, while those in 
tritonia will involve simulation of the individual action potentials. Comparison of tritonia 
and lamprey motor control networks also serves to highlight common principles sub
serving motor control in widely different species (Pearson, 1993). 

13.1 Lamprey central pattern generators 

A major concept underlying rhythmic motor behavior is that of a motor central pattern 
generator. A central pattern generator may be defined as a neural network that will 
produce stereotypical limit cycle oscillations in response to a constant spike rate input. 
Fhe constant input, sometimes termed a command signal, typically serves to trigger the 
oscillation and to determine its frequency and hence the speed of locomotion. Command 
signals generally originate from higher motor control centers in vertebrates (although 
they may also result from sensory input that triggers reflex movements), and they reflect 
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the hierarchical nature of motor control. The classic example is the demonstration by 
Shik et al. (1966) that a cat whose motor cortex has been isolated from the spinal cord can 
be made to walk or run by electrical stimulation at an appropriate point in the midbrain. 
Thus, the brain does not 'micro-manage' locomotion but only needs to decide the speed 
and direction of motion, leaving the neural details of oscillatory pattern generation and 
coordination to central pattern generators in the spinal cord. 

Let us begin our study of central pattern generators with an examination of the lamprey 
spinal cord. The lamprey is a primitive, eel-like vertebrate which swims by generating 
traveling waves of neural activity that pass down its spinal cord, thus propelling the 
animal forward (Gray, 1968; Grillner et ai, 1995). Several stages of swimming are 
depicted in Fig. 13.1B, and a simulation of lamprey swimming can be viewed by running 
the MatLab script SwimmingJLamprey.m. This swimming activity has been intensively 
studied, and several excellent accounts of the neurophysiology are available (Cohen et ai, 
1992; Grillner et ai, 1995; Grillner, 1996). It has been shown that an intact spinal cord 
isolated from the rest of the body will generate rhythmic bursts of neural activity 
appropriate for swimming in response to constant stimulation (which originates in the 
brainstem in the intact animal). Further experiments have shown that even small sections 
of the spinal cord are capable of generating rhythmic bursts of spikes in which activity on 

Q A Rostral (head) 

Caudal (tail) 

Fig. 13.1 Coupled phase oscillators in the lamprey spinal cord (A), and body shape at four instants during 
lamprey swimming (B). 
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one side alternates with that on the other. Such oscillatory networks in the spinal segments 
cause alternate contraction and relaxation of the body muscles on opposite sides of the 
body during swimming. 

Four types of neurons are present in each segment of the lamprey spinal cord: excita
tory intemeurons (E), lateral inhibitory interneurons (L), crossed inhibitory interneurons 
(C), and motoneurons (M). The interconnections among these neurons are depicted in 
Fig. 13.2A. Several considerations allow us to simplify this neural network. First, the 
motoneurons are driven by the E neurons and only function to provide output from the 
segmental oscillator to the muscles; they need not be simulated. Each half of the network 
contains neurons of all three types, and each receives constant input from command cells 
in the brainstem during swimming. Within the segment, the E neurons excite both the 
C and L neurons. The E neurons on each side are also interconnected locally by excitatory 
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Fig. 13.2 Lamprey spinal central pattern generator. A depicts network connections within and between left 
and right body sides, both of which are controlled by a command neuron (A) and modulated by a serotonin-
releasing neuron (S). E neurons have recurrent excitatory connections, while C cells inhibit all neurons on the 
other side of the body. Bursting produced by the network equations (13.1) is plotted in B as spike rates, and 
individual spikes in each burst are approximated in C. 
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synapses, thus providing a source of local positive feedback. The role of the C neurons is to 
inhibit all of the neurons on the opposite side of the network, so it is these neurons that 
produce the alternation of bursting activity via antiphase locking. The L neurons in turn 
provide delayed inhibition to the C neurons, and it was originally thought that they played 
a crucial role in terminating the inhibition generated by the C neurons. However, recent 
neural modeling studies have showed that the L neurons play a small role in the network, 
and neural bursting is actually terminated by powerful after-hyperpolarizing (/AHP) cur
rents in both the E and C cells (Hellgren et ai, 1992; Wallen et ai, 1992). Indeed, the most 
recent simulation of the lamprey oscillator by Lansner e? al. (1997) eliminates the L neurons 
entirely, so L cells will be ignored here as well. In the resulting network excitation will cause 
the E neurons on one side of the spinal segment to excite one another, thereby activating 
motoneurons and contracting muscles on that side of the body. These E cells simulta
neously stimulate the C neurons, which inhibit all neurons on the other side. Activity on this 
one side terminates as a result of spike frequency adaptation resulting from a slow but 
powerful /AHP current. This releases neurons on the other side from C cell inhibition; they 
become active in response to their brainstem inputs; and the cycle repeats itself. As will be 
seen, modulation of the /AHP current by serotonin (5-HT) is responsible for the extended 
frequency range of the network (Harris-Warrick and Cohen, 1985: Lansner et ai, 1997). 

Simulation of the lamprey spinal oscillator will require just four groups of neurons: 
E and C cells for the left and right sides of the body. The simulation can be further simplified 
by using just one cell to represent each group. This symmetry subsampling technique was 
used when studying the Wilson-Cowan (1972) oscillator, and it is mathematically exact 
under conditions where all neurons in a group are identical in their properties and con
nectivity. Indeed, the lamprey oscillator has been simulated with both multiple neurons of 
each type (Hellgren etcti, 1992) and with subsampling (Wallen et ai, 1992) with very similar 
results. The final decision in modeling this network is the level of description of the indi
vidual neurons. The lamprey oscillator has been simulated with neurons described at the 
individual spike and ion current level (Grillner el ai, 1998; Hellgren et ai, 1992; Wallen 
el ai, 1992) and at the spike frequency level (Buchanan. 1992; Williams, 1992; Ekeberg, 
1993). Following the most recent simulations by Lansner and colleagues (1997), after which 
the present simulation is patterned, neuronal responses will be described at the spike rate 
level using the Naka-Rushton function (2.11). As discussed in Chapters 6 and 8, the 
effects of a slow /AHP adapting current can easily be incorporated when using spike rate 
descriptions. 

The equations for the EL and C\ neurons comprising the left half of the lamprey model 

are: 

9 d£L = _ £ | 100[.4L + 6E L -C R ] 2
t 

dl L (64 + ,?//ELF + [/iL + 6£j_-CR] 

d? rH 

d C L _ \00\AE + 2EL - CR}\ 
(13. 

9 - - ^ = -CL + 
dt (64 + gHcy)'+ [AL + 2EL - CR] 

d//CL 1 
—77^ = — (-HCL + EL) 

dt m 
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Equations for the right half are of the same form with the subscripts L and R inter
changed. Fhe equations in (13.1) represent two neurons described by the Naka-Rushton 
function (2.11) (recall that the brackets [ ]+ equal zero when the enclosed argument is 
negative). The brainstem input \s AE, and the parameters g and TH (defined below in 13.3) 
represent the gain and time constant of the /AHP currents for both neurons. As will be seen, 
both g and TH are dynamically altered through serotonin modulation. 

Although this network is eight-dimensional when both sides are considered, the prin
ciples underlying its operation are easy to understand. If you run MatLab script 
Lamprey.m with a stimulus A = 7, you will obtain the results plotted in Fig. 13.2B. Bursts 
of spikes are alternately generated by EL and £R, and each burst begins at a high rate and 
then decays as the slow /AHP current produces spike rate adaptation. A function 
Make_Spikes.m has been used to approximate the individual spikes corresponding to the 
continuous spike rate variable £R, and these are illustrated in Fig. 13.2C. 

From the shape of the bursting pattern, one might conjecture that it is the /AHP currents 
which cause the termination of each burst, as there can be no inhibition from the other side 
of the animal when those cells are silent due to suppression by the contralateral C neuron. 
This can be verified by running Lamprey.m again after first setting the variable Ginhib = 0 
(it lies between rows of asterisks) in the program. This simply cuts off the contralateral 
inhibition entirely, so the left and right halves of the network become independent. With 
the input A = 7, the bursting pattern in Fig. 13.2B is again observed, except that EE and 
£R now burst almost in phase (the slight phase shift results from a small bias in the initial 
conditions). This will be even more obvious with a somewhat stronger stimulus, such as 
A = 10. This decoupled half of the lamprey segmental oscillator is sometimes called a half-
center to indicate that it controls one of two opposed sets of muscles and inhibits the 
neurons controlling the other set. 

As one side of the oscillator will burst even when decoupled from the other, (13.1) can 
be reduced from eight variables to just two: EE and HE\_. The CE neuron can be eliminated 
from consideration along with its /AHP current because its output now has no effect on any 
other cell in the decoupled network. Under these conditions, (13.1) reduces to: 

d£L _ \00[AL + 6EL] 
9 —— = —Ei_ + -

d? ' (64 + gHELf + [AL + 6EL 

dHEL 1 
'13. 

d? TH 

:-HEL + EL) 

These equations can now be analyzed using phase plane techniques (the phase plane is 
plotted in Fig. 2 of the Lamprey.m MatLab output). Summarizing the results of such an 
analysis for 2 < A < 17 (approximately) there is a single steady state that is an unstable 
spiral point. Due to the nature of the Naka-Rushton function in (13.2), 0 < EE < 100, so 
the same limits must be true for HEE which is driven by EE. Fhe Poincare-Bendixon 
theorem (Theorem 10) can now be used prove that (13.2) must possess an asymptotically 
stable limit cycle for this range of A values. 

It is notable that the limit cycle for an isolated half of the lamprey is based on principles 
analogous to the Wilson-Cowan (1972) oscillator discussed in Chapter 8. In both oscil
lators recurrent excitation drives the upswing at the beginning of each burst. Following 
this, recurrent inhibition driven by the excitatory activity terminates the bursting in the 
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Wilson-Cowan (1972) oscillator, and an analogous role is played by the slow but 
powerful /AHP current in the lamprey oscillator. The importance of recurrent excitation 
for the lamprey oscillator can be seen by again running Lamprey.m with Ginhib = 0 to 
uncouple the left and right sides. If the strength of recurrent excitation is reduced by 
setting the program variable EE = 2, the limit cycle vanishes, and the system decays to an 
asymptotically stable steady state. 

As each side of the lamprey oscillator is capable of independent oscillation, what then is 
the role of the crossed inhibition mediated by the C neurons in (13.1)? Basically there are 
two answers. First, when the two sides are coupled via C neuron crossed inhibition, the 
sides burst out of phase, which is necessary for the motor control of swimming. Such 
antiphase locking between interacting oscillators was analyzed in the previous chapter. 
Second, the crossed C cell inhibition does extend the upper end of the dynamic range from 
about A = 17 to A = 24. This is explained by the observation in Chapter 8 that mutually 
inhibitory neurons with /AHP currents can generate alternating bursts of activity even in 
the absence of explicit recurrent excitation (see Fig. 8.11). 

Fhe effect of serotonin (5-HT) in controlling burst frequency is the final element of 
lamprey central pattern generation. Harris-Warrick and Cohen (1985) demonstrated that 
serotonin modulates the swimming frequency in the isolated lamprey spinal cord over 
about a tenfold range. If the Lamprey.m simulation is repeated for 2 < A < 24 the burst 
frequency curve plotted as a solid line in Fig. 13.3 will be obtained. This range from about 
0.5 to 10.0 Hz is the frequency range of bursting observed in the isolated lamprey spinal 
cord (Wallen et ai, 1992; Hellgren et ai, 1992). Above this range both the experimental 
preparation and the model in (13.1) generate steady firing behavior rather than bursting. 
In the model this is due to a supercritical Hopf bifurcation. The onset of bursting at low 
stimulus levels, however, occurs at a saddle-node bifurcation, which permits the bursts to 
be initiated with large amplitude and low frequency. 

What is the physiological basis for the almost linear relationship between stimulus 
intensity A and burst frequency? Lansner et al. (1997) have argued cogently that it is 
due to modulation of the /AHP currents by serotonin. Lansner et al. (1997) suggest that 
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Fig. 13.3 Burst frequencies produced by (13.1) for a range of stimulus values A. Blocking serotonin prevents 
the network from generating higher frequency bursts. 
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serotonin-secreting neurons bathe the lamprey network at low stimulus intensities, 
thereby producing a relatively slow and weak /AHP current. At higher stimulus levels, 
however, serotonin release is inhibited by the stimulus, which results in stronger and faster 
/AHP currents. This is shown diagrammatically in Fig. 13.2A, where the brainstem com
mand neuron A inhibits the serotonin releasing neuron S. The effects of serotonin on 
(13.1) are simulated by varying the /AHP current parameters TH and g as functions of the 
stimulus level A according to the formulas: 

g = 6 + (0.09 + A)2 

400 (13.3) 
T H 

\ + (0.2 + A)2 

These relationships result in an increase in the gain g and a decrease in the time constant TH 
of the /AHP current as A increases, which produces the burst frequency modulation results 
of the Lansner et al. (1997) network model. To see the effects of blocking serotonin 
modulation of the network, set the variable HT5 = 0 in Lamprey.m, and run the program 
for a range of stimuli A. The burst frequency is now almost constant as shown by the 
dashed line in Fig. 13.3. 

The lamprey segmental oscillator embodies a number of basic neural principles. As 
exemplified by the Lansner et al. (1997) model, each half of the segmental oscillator will 
burst as a result of two factors: recurrent excitation initiates the burst, while spike fre
quency adaptation produced by the /AHP current terminates it. Antiphase oscillations of 
the left and right sides are produced by the crossed C neuron inhibition. Finally, burst 
frequency increases with command neuron activation because serotonin modulation of 
the /AHP current is reduced by command neuron inhibition. Thus, an interplay among 
ionic currents, excitatory and inhibitory network connectivity, and neuromodulation 
produces the swimming rhythm of lamprey central pattern generators. 

13.2 Traveling waves and swimming 

Command signals to central pattern generators in individual lamprey segments are suf
ficient to evoke oscillatory responses with alternate left and right activity, but this alone 
cannot produce swimming. The oscillations in successive segments must also be coordi
nated so that waves of contraction ripple along the body producing smooth forward 
movement as shown by the MatLab animation swimmingLamprey.m. Experiments using 
the isolated lamprey spinal cord have shown that waves of neural activity travel along the 
cord even in the absence of muscles or sensory feedback (Cohen et ai, 1982). Thus, the 
neural architecture within the spinal cord must be capable of generating traveling waves 
by itself. 

As the lamprey spinal cord contains approximately 100 segments, modeling the entire 
array with 800 differential equations based on (13.1) would be formidable. Fortunately, 
the phase oscillator model of Cohen et al. (1982) can be used to predict conditions under 
which neural connections between segments will lead to the traveling waves of neural 
activity observed experimentally. Let us therefore consider chains of coupled phase 
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oscillators as depicted in Fig. 13.1 A. Each of the N oscillators (only seven are depicted) is 
coupled to its neighbors in the adjacent segments. This represents a simplification, because 
intersegmental coupling extends beyond nearest neighbors in the lamprey spinal cord 
(Grillner et ai, 1995; Grillner, 1996; Cohen et ai, 1992). Nevertheless, nearest neighbor 
coupling can elucidate the principles underlying traveling wave generation during lamprey 
swimming. Swimming is produced by a wave of segmental oscillator activity traveling 
from the rostral (head) to the caudal (tail) of the animal in forward swimming or in the 
reverse direction for backward swimming. Furthermore, experiments have shown that 
there is always approximately one wavelength of neural activity per body length of the 
animal independent of swimming speed (Grillner et ai, 1995; Cohen et ai, 1992). These 
observations will be explained by studying a chain of coupled phase oscillators. 

A traveling wave in a chain of coupled neural oscillators is defined as a phase-locked 
solution in which there is a constant phase difference |0| < 7r/2 between adjacent seg
ments. In the lamprey with 100 segments per body length or wavelength, therefore, 
|0| w 7r/50. The intersegmental phase differences are defined as 0, = 9I+] - 8,. This 
means that a traveling wave solution with 0, < 0 corresponds to a wave traveling from 
head to tail of the animal, while 0, > 0 corresponds to a wave traveling from the tail back 
to the head. 

The N equations for a lamprey spinal network with nearest neighbor coupling repre
sent a natural generalization of (12.2), and equations analogous to (12.3) are derived by 
setting 0, = 9i+] - 9, for; = 1 to N - 1 (see Fig. 13.1 A). Fhe sinusoidal form for coupling 
functions in (12.6) will again be used. Assuming that all descending coupling (rostral to 
caudal) is identical, and all ascending coupling (caudal to rostral) is also identical, only 
two coupling coefficients «d and aa a are required along with a synaptic delay o. Thus, the 
equations for the N coupled phase oscillators are: 

d0] . ,n A 
-—— = uj] + a, sin((+ -8] + o) 
dt 
68 
- - = w,+flasin(c?/+i -8, + a) + adsm(9,_] - 9, + o) i = 2 N-\ (13.4) 
d? 

An 

—— = UJN + fld sin(f?.v_i - 8N + a) 
dt 

Pairwise subtraction and substitution of 0, = 9,+ ] — 9, now leads to an (N — 1 (-dimen
sional system for the phase differences: 

d0i 
—— = Auj] + aa[sin(0: + rr) - sin(0i + o)\ + ad sin(—0, + a) 

-—= AUJ, + <7a[sin(0Hi + o) - sin(0,• + o)} 

+ </d[sin(-0, +cr) - sin(-0,_, + o)] i = 2 , . . . , V - 2 

— — = At^^_i - (?., sin(0A>_i + a) — «d[sin(-0,v-i + a) - sin(-0,v_ : + a)] 

where Aw; = w,-+i - UJ,. 
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As in the previous chapter, asymptotically stable steady states of (13.5) correspond to 
phase-locked solutions of (13.4). For different values of the frequency differences, Aw„ 
which are determined by command signals from the lamprey's brain, many different 
phase-locked solutions are possible. However, our goal is to find traveling wave solutions. 
To determine conditions under which (13.5) has a traveling wave solution, set d0,/d? = 0 
and substitute 0 = 0, for all i. This constant phase difference defines a traveling wave. The 
resulting equations for the steady state traveling wave then become: 

Auj] + cti sin(—0 + o) = 0 

AUJ, = 0 i = 

AUJN-] — fla sin( 

, /V -2 (13.6) 

Thus, a traveling wave solution requires that the frequency differences AUJ, must vanish 
for i = 2, N - 2, so all frequencies must be the same except for the first and last. The first 
and last equations in (13.6) yield distinctive conditions for traveling waves, because these 
two equations describe the boundaries (head and tail) of the chain of oscillators. Note that 
Awi and AWA?-I cannot both be zero unless o = 0 or TT. AS a first traveling wave solution, 
therefore, let us choose Au;^_ i = 0 and solve the first and last equations in (13.6) with the 
result: 

Au>i = —fla sin(—0 + a) 
(13.7) 

As Awi = UJ2 - uj] = -ad sin(2cr), u)\ must be slightly larger than all remaining UJ, (which 
are identical) for a traveling wave solution to exist. This assumes that 2<T < IT, which is 
appropriate for synaptic delays between segments. Thus, we have obtained a traveling 
wave solution in which the wave moves from the head to the tail, generating forward 
swimming in the lamprey. Backward swimming can be generated by setting u>\ = 0 and 
again solving (13.6). 

The stability of solution (13.7) to the coupled oscillator system (13.5) is determined by 
the following Jacobian matrix in which the equilibrium solution 0 = —a has been sub
stituted: 

/ -fla - b 
b 

0 

V 0 

fla 

"fla - b 

0 

-«a - b aa 

0 

(13. 

b) 

where b = ad cos(2cr) 
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The eigenvalues of this matrix will have negative real parts as long as aa > 0, «d > 0, and 
fi < 7r/4. Thus, the traveling wave solution to (13.5) is asymptotically stable. 

We have now proved that nearest neighbor coupling between the segmental oscillators 
in the lamprey spinal cord can generate traveling waves producing either forward or 
backward swimming behavior. All aspects of this swimming behavior are produced by the 
segmental oscillators and their coupling within the spinal cord. The lamprey's brain only 
needs to send a constant command signal (i.e. a constant spike rate) to all segments to 
produce the desired swimming rate plus a slightly larger signal to either the first or last 
segment to determine the direction of swimming. The remaining aspect of lamprey 
swimming to be explained is the fact that the traveling wave of neural activity in the spinal 
cord has a wavelength equal to the body length of the animal. As explored in Exercise 2, 
this can be done by choosing appropriate nonzero values for both Auj] and ACJJV-I • Fhe 
lamprey spinal cord actually includes both nearest neighbor connections as modeled here 
and longer range connections. The role of these longer range connections in producing 
traveling waves with a wavelength equal to the body length of the organism is discussed by 
Cohen and Kiemel (1993) and Ermentrout and Kopell (1994). 

13.3 The swimming lamprey 

The mathematical analyses above incorporate all of the principles thought to underlie 
neural control of lamprey swimming. Ekeberg (1993) demonstrated this in truly elegant 
fashion by simulating the entire lamprey spinal chord plus the biomechanics of muscle 
contraction in alternately curving the animal's body first left and then right. His simu
lations incorporated the mass of the animal, sensory feedback to the spinal networks from 
stretch receptors, and drag forces of water on the body. Some of the biomechanical 
principles of water drag forces had been developed by Gray (1968). 

Although the biomechanical details go beyond the scope of this book, it is possible to 
get the flavor of lamprey swimming from a few simple considerations. Let us start with the 
neural activity generated by the segmental oscillator as shown in Fig. 13.2B. As activity 
in Ei and £R causes alternate activation of the left and right motor neurons M, the 
appropriate waveform for control of the muscles is EE — £R. Fhis is plotted by the solid 
line in Fig. 13.4. As one cycle of this oscillation forms a traveling wave with one wave
length per body length, the abscissa in Fig. 13.4 is body length in cm, the lamprey aver
aging 30 cm in length (Ekeberg, 1993). Fo simplify computation of traveling waves, the 
neural activity has been approximated by the sum of two sine waves shown by the dashed 
line in the figure. From the discussion of muscle models in Chapter 3, let us assume that 
the neural activity sets the threshold length and therefore the force generated by the 
muscles. Given Newton's second law of motion, F = M A, the change in muscle length will 
be inversely proportional to mass per body segment. As discussed by Ekeberg (1993), 
lamprey body mass is approximately proportional to the width of the body, which is 
constant for about 10cm from the head and then tapers linearly to the tail. Accordingly, 
the same level of neural activity will produce a greater bend in the angle between body 
segments near the tail than near the head. Finally, the drag forces of water result in the 
lamprey's forward progress being less than the distance of wave travel along its body per 
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Fig. 13.4 Neural activity of the lamprey segmental oscillator (£ L -£ R ) in (13.1) compared with an approxi
mation based on the sum of two sines. 

unit time. The MatLab script SwimmingLamprey.m approximates these factors to 
produce a computer animation of a swimming lamprey as seen from above, and several 
frames of the animation are depicted in Fig. 13.1B. Although the biomechanics of turning 
to the left or right have not been simulated, the MatLab script LampreyTurn.m with a 
small difference in stimulus levels to the left and right sides (e.g. 7 and 5) will produce more 
prolonged neural activity on one side of the lamprey than on the other, which is the neural 
basis of turning. This completes the analysis of swimming behavior in lampreys, from 
serotonin modulation of/AHP currents to the complete animal! For further details of the 
neural modeling and biomechanics of swimming, see Gray (1968) and Ekeberg (1993). 

13.4 Quadruped locomotion 

Terrestrial quadruped locomotion is a much more complex problem than lamprey 
swimming and is accordingly much less well understood. One reason for this is that 
quadrupeds have several different gaits that are used for different speeds of locomotion, 
walking and galloping being the two extremes. A second reason is that quadruped 
locomotion must be stable with respect to the force of gravity, or the animal will fall. 
Nevertheless, it is possible to gain some insight into phase locking for stable quadruped 
locomotion by developing a phase oscillator network for control of four limbs. 

During locomotion, each limb of a quadruped is controlled by an oscillator in the spinal 
cord that generates alternate flexion and extension of the limb. During flexion the limb is 
pulled up and swung forward, while during extension the limb makes contact with the 
ground and supports the body weight. Furthermore, sensory feedback is not necessary to 
generate the flexion-extension cycle (Pearson, 1993; Shik et ai, 1966). Walking and 
trotting obviously require coordination among the four oscillators controlling the four 
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Fig. 13.5 Phase oscillator model for quadruped gaits. The four oscillators and synaptic connection param
eters a-c are depicted in A. The phase relationships between left and right front (F) and hind (H) limbs in 
trotting and galloping are illustrated in B. 

limbs, so let us examine the network of four phase oscillators in Fig. 13.5 A. Fhe equations 
are: 

UJ + a sin 8] + o) + bsm(92 - 9] + o) + csin(04 - 8\ + a) 
d0, 

~dl 
df+ 
—- = UJ + flsin(f?4 - 8i + a) + bsm(8] -82 + a) + csin(03 - 82 + a) 
d? 

;i3.9) 

Fhe synaptic coefficients a, b and c determine the strengths of the front-hind, left-right, 
and diagonal coupling respectively (see Fig. 13.5A). Equations for only two of the phase 
oscillators, those controlling the left (9]) and right (92) front legs, are necessary here. The 
equations for the hind legs become redundant, because quadruped trotting and galloping 
both require that the hind leg on the same side of the animal be 180° out of phase with the 
front leg. A simplified view of these two gaits is depicted in Fig. 13.5B. In trotting, each 
diagonal pair of legs (e.g. left front and right hind) is in phase but is 180° out of phase with 
the other diagonal pair. In galloping the phase locking switches so that the front legs are in 
phase but 180° out of phase with the hind legs. The oscillator equations for the hind legs 
are thus redundant because of the equalities: 

02 + T, 0, = 0 1 +7T (13.10) 

These equations hold true (as idealizations) for both trotting and galloping, and sub
stitution into (13.9) yields: 

d0, 

~d7 
d02 
~d7 

u - flsin(<r) + bs'm(92 - 9] + o) - rsin(02 - 0| + o) 

ui - asin(fj) + 6sin(0i - 92+ o) - csin(0] — 92 + a) 

113.11) 
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where use has been made of the identity sin(.v + IT) = - sin(.v) for any x. This reduces the 
network to a pair of coupled oscillators like those already considered. Proceeding as 
before and setting 0 = 82 - 0, gives: 

d0 
— = (c - b) sin(0 + a) + (b - c)sin(-0 + a) (13.12) 

Setting d0/d? = 0, and using trigonometric identities for sin(±0 + a), shows that the 
Phase-locked equilibrium states must satisfy: 

(b - c) cos(tr) sin(0) = 0 (13.13) 

As the synaptic delay a > 0, the solutions to (13.13) will be 0 = 0, it so long as b f^ c. 
This shows that the four legs of the phase oscillator quadruped will be phase locked into 

one of two gaits as long as the left-right coupling coefficient b is different from the 
diagonal coupling coefficient c. The solution 0 = 0 produces a gallop in which the front 
two legs are in phase, while 0 = IT corresponds to a trot in which the front two legs are out 
of phase (and therefore given 13.10, the diagonal legs are in phase). To determine which 
gait is asymptotically stable, let us carry out a linearized stability analysis on (13.12) for 
0 = 0. The resulting linearized equation shows that 0 = 0 will be asymptotically stable if: 

(b - c) cos(cr) > 0 (13.14) 

If the inequality in this expression is reversed, then 0 = 0 is unstable, but 0 = n is 
asymptotically stable. Assuming a < ir/2, which is appropriate given the brief duration of 
synaptic transmission relative to a single cycle of running, the balance between the left-
right coupling strength b and the diagonal coupling strength c determines which gait will 
be stable. These coefficients are presumably regulated by excitatory and inhibitory 
command signals from higher brain centers. 

Before leaving the quadruped example, it is worth mentioning that inhibitory coupling 
can lead to phase locking as effectively as excitatory coupling can. If b = 0 in (13.14), 
inhibitory coupling between diagonal limbs (c < 0) leads to asymptotic stability of the 
solution 0 = 0. The extent to which different quadruped gaits are determined by inhibi
tory as opposed to excitatory coupling is at present unknown. 

13.5 Tritonia swimming 

Recent research indicates that some rather general principles underlie the control of 
swimming in both vertebrates and invertebrates (Getting, 1989a,b; Pearson, 1993; Stein 
etai, 1997). Asa basis for comparison with the vertebrate lamprey, let us briefly examine 
the neural network underlying swimming in the marine mollusk Tritonia. The discussion 
that follows is based on both the experimental and neural modeling work of Getting and 
colleagues (Getting and Dekin, 1985; Getting, 1988, 1989a,b. 1997). 
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Fig. 13.6 Tritonia swimming network. The three cell types with excitatory (arrows) and inhibitory (solid 
circles) interconnections arc illustrated in A. B shows five cycles of rhythmic firing behavior triggered by a 
brief stimulus (bar at bottom left) (reproduced with permission. Getting and Dekin. 1985). 

The Tritonia swimming network is illustrated in Fig. 13.6A, while the neural activity of 
the three neuron types is depicted in Fig. 13.6B (data from Getting and Dekin, 1985). 
Following brief activation of the dorsal swim interneurons (DSIs), the network produces 
4-7 cycles of rhythmic activity. As is evident from Fig. 13.6B, activation of the DSIs leads 
to activation of the C2 neurons and finally to activation of the ventral swim interneurons 
(VSIs); then the cycle repeats itself. Swimming activity is produced as a result of DSI cells 
exciting motor neurons that produce dorsal flexions of the mollusk's tail, while VSI cells 
excite other motor neurons causing ventral flexion. Thus, the mollusk swims away. 

The anatomy of the network, depicted in Fig. 13.6A, illustrates the interconnections 
among all three classes of neurons. Fhe DSI cells (three in the network) are mutually 
excitatory and also excite the lone C2 neuron while inhibiting the two VSIs. The VSI are 
also mutually excitatory. Simply looking at the anatomical diagram, it might seem dif
ficult to suppose that this network could generate a sustained oscillation. As with the 
lamprey, the key to understanding lies in the interplay between the anatomical connec
tions and the intrinsic ionic currents within the different cell types. Both the DSI and C2 
exhibit prominent /AHP currents that produce prominent spike frequency adaptation, 
while the VSI cells have a prominent /A current. Thus, the DSIs driving the network adapt 
sufficiently so that activity from the VSI cells (driven by the DSI via the C2 neuron) will 
quench their activity. The VSIs, despite their mutual excitation, inhibit their C2 activation 
source, and their I\ current causes their firing to reduce to such a low level that the DSIs 
can shut them off. 

A simulation of the Tritonia swimming network requires a number of decisions to be 
made, and the simulation developed here is similar in spirit to those of Getting (1989a,b) 
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and Frost et al. (1997). First, let us choose to simulate the individual neurons at the level of 
ion currents and individual spikes. Second, the network can be simplified by treating the 
individual neurons of the DSI and VSI types as identical and using symmetry subsampling 
as in the lamprey model. In addition, the simulation must incorporate /AHP currents in the 
DSI and C2 neurons and an /A current in the VSI cells. These modeling decisions are 
embodied in the MatLab script Tritonia.m which uses neural equations from Chapters 9 
and 10. With the /AHP current magnitude set to 1.62, the program produces the spike 
trains plotted in Fig. 13.7 (it takes about 4 min). As with the experimental data in 
Fig. 13.6B, brief stimulation of the DSIs leads to a repetitive series of bursts in which the 
DSI and VSI cells fire in antiphase, while the C2 firing overlaps the DSI -VSI transition. 
The experimental bursting data are over 10 times slower than the model (0.15 Hz versus 
2.4 Hz), but this can be rectified by rescaling the time constants appropriately. 

The network behavior raises two prima facie puzzling issues: (a) how do the DSIs 
become re-excited after the cessation of VSI inhibition, and (b) why does activity cease 
after a finite number of cycles (six in this case)? The answer to the first question is that the 
model DSI generate very long duration EPSPs via their recurrent excitatory connections, 
and this permits excitation to survive through the period of active inhibition by the VSI 
cells, whose IPSPs are considerably shorter (see Fig. 13.7). Getting and Dekin (1985) have 
reported that synaptic potentials in Tritonia vary in duration from 0.65 s up to 20.0 s, so a 
model synaptic time constant Tsyn = 320 ms for the DSI-DS1 connections is certainly well 
within range, even when the model is scaled by a factor of about 20. Bursting in the model 
finally ceases as a result of the very slow increase in hyperpolarization mediated by an 
/AHP current with a time constant TAHP = 1250 ms. This means that when the magnitude 
of this current is sufficiently large (1.62 in this case), the resting state of the network is 
always asymptotically stable, although it takes about 3000 ms for transient activity to die 
out once the network is excited. This interplay between the duration of the DSI-DSI 
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Fig. 13.7 Simulation of tritonia swimming network in Fig. 13.6A. 
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recurrent excitation and the strength of the slow /AHP current is explored further in 
Exercise 5. 

A command neuron believed to drive the Fritonia swimming network has recently been 
discovered (Frost and Katz, 1996; Frost et ai, 1997). As this neuron appears to receive 
excitatory connections from C2 and inhibitory connections from the VSI cells, it bursts 
along with the other neurons under physiological conditions. Thus, this cell could be 
incorporated into the network quite easily, and the same principles would explain how it 
becomes re-excited following inhibition. 

13.6 Principles of central pattern generation 

This chapter has attempted to fulfill the promise inherent in the title of this book by 
integrating ion currents and spikes into an explanation of the behavior of an organism. In 
doing so, several common principles of central pattern generator organization have 
emerged. First, motor pattern generation emerges from a complex interplay between 
intrinsic membrane properties of the constituent neurons and network properties defined 
by their synaptic interconnections. As emphasized by Getting and Dekin (1985, p. 7) with 
respect to Fritonia: 'Pattern generation... emerges as a property of the network as a 
whole. No single cell nor synapse is capable, in isolation, of producing the oscillatory 
burst pattern. Fhe ability of this network to generate patterned activity depends on the 
interaction of both synaptic connectivity and the intrinsic cellular properties of each 
neuron.' Our analysis has shown that the same is true of the lamprey segmental oscillator 
and even of the two-neuron Clione swimming system. 

Second, virtually all central pattern generators incorporate mutual inhibition between 
the two half-centers controlling opposed sets of muscles. Fhis inhibition is present 
between the DSI and VSI cells in Tritonia (see Fig. 13.6A) and between the left and right 
halves of the lamprey segmental oscillator, where it is mediated by the C neurons (see Fig. 
13.2A). In Clione, mutual inhibition represents the only synaptic interaction between 
component neurons. A major role of this inhibition is to force neurons controlling 
antagonistic muscles to fire in antiphase, as was apparent from decoupling the half-
centers of the lamprey model. 

Finally, central pattern generators generally incorporate some form of recurrent exci
tation within each half-center. This is the case for the E neurons on either side of the 
lamprey segmental oscillator, and it is also exemplified by the DSI-DSI and VSI-VSI 
excitation in Tritonia. Clione might seem to be an exception to this rule, as there are no 
excitatory synapses in its two-neuron swimming network. However, postinhibitory 
rebound acts like a form of seif-excitation following a strongly hyperpolarizing event. 
Recurrent excitation is responsible for bursting in both the lamprey and Tritonia swim
ming oscillators, as none of the cells incorporated in these models can burst due to intrinsic 
membrane currents. Control of excitation mediated burst duration by serotonin enables 
the lamprey to control its swimming speed. Such neuromodulation of central pattern 
generators turns out to be another common motor control theme (Stein et ai, 1997). 

In closing this chapter, an important principle of neural modeling deserves emphasis. 
Three different central pattern generators have been modeled and analyzed here: Clione, 
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lamprey, and Tritonia. The modeling itself has been carried out at three different levels of 
generality. The Clione and Tritonia models incorporated detailed descriptions of multiple 
ion currents and resulted in simulations at the level of individual spikes. The lamprey 
segmental oscillator, on the other hand, was simulated at the spike rate level, with only the 
/AHp current being explicitly included. Finally, the very general phase oscillator model 
used to analyze traveling waves in the lamprey ignores all details of the segmental oscil
lators except that they do in fact oscillate. The deep insight provided by these examples is 
that neural network behavior can be elucidated through studies conducted at several 
different levels of generalization. For example, the lamprey oscillator has been simulated 
both at the individual ion current and spike level (Grillner et ai, 1988; Hellgren et ai, 
1992; Wallen et ai, 1992) and at the spike frequency level (Buchanan, 1992; Williams, 
1992; Ekeberg, 1993), and the results have been similar, although not identical. In Eke-
berg's (1993) simulation of the entire spinal cord and biomechanics of lamprey swimming, 
description at the spike frequency level was necessary in order for the problem to remain 
conceptually and computationally tractable. Bigger simulations utilizing more complex 
descriptions of individual neurons are not necessarily better. Sometimes, the sheer size of 
a simulation obscures an understanding of the dynamical and physiological principles 
upon which network operation is based. As Kopell (1988, p. 400) phrased it: 'The level of 
detail needed to account for a particular phenomenon depends on the phenomenon. In 
working with a "realistic", i.e., detailed model, one can lose sight of why it is working, and 
whether it would continue to work if some ad hoc part of the description is modified.' 

Excellent sources of material on other central pattern generators include the edited 
volumes by Selverston (1985), Cohen et al. (1988), and Stein et al. (1997). All are excellent 
sources for both deepened understanding of motor control and modeling projects. 

13.7 Exercises 

1. Determine the constant phase lag 0 and frequency w for backward swimming in (13.6) 
by setting ACJI = 0 and solving the resulting equations. 

2. As discussed in the chapter, lamprey swimming involves a traveling wave with a 
wavelength equal to the body length of the animal. As there are about N = 100 segments, 
that means that the constant phase lag between segments must be 0 = ±7r/50. Using this 
value, solve (13.6) for the values of Au] and AUJ^ that will produce this wavelength for (a) 
forward and (b) backward swimming. 

3. Insects have six legs arranged roughly hexagonally, and one of their main gaits during 
locomotion involves locking three alternate legs in phase and moving them while the 
remaining three legs provide a stable triangular platform to support the body. Based upon 
the example of quadruped locomotion in the chapter, develop a phase oscillator model for 
insect walking by reducing the six equations to two for the activity of adjacent legs. Assume 
that there is only coupling between adjacent oscillators and that this reciprocal coupling 
has strength k. For what values of k will the two sets of three legs oscillate in anti-phase? 

4. Consider the equation for a lamprey half-center in (13.2). Assume a stimulus A = 10, 
and use (13.3) to determine the parameter values g and TH . Now determine the bifurcation 
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value for the excitatory connectivity factor (set at 6 in 13.3) for a half-center to generate a 
limit cycle. What type of bifurcation does the system go through as the excitatory con
nectivity is increased? 

5 . Use the script Tritonia.m to explore the dependence of network bursting on the fol
lowing two parameters: /AHP current strength and rsyn for the DSI-DSI recurrent exci
tatory connections (termed TauED in the script), (a) Keep TauED = 320ms and 
determine the number of bursts obtained for the following values of/AHP current mag
nitude: 1.5, 1.6, 1.7, and 1.8. (b) For a current magnitude of 1.6, determine the number of 
bursts for each of the following DSI-DSI excitatory synaptic time constants: 400, 320, 
300, and 250 ms. Under what conditions does the network appear to generate an 
asymptotically stable bursting pattern as opposed to a short transient set of bursts'1 (This 
program will take about 5 min per simulation.) 



14 Lyapunov functions and memory 

All of the nonlinear dynamical problems encountered so far have been analyzed by 
linearizing around the equilibrium points of the system to determine stability. While this 
is by far the most useful method in practice and one that has enabled us to understand 
phenomena as complex as bursting and neural synchrony, it is not the most general 
method. Linearized stability analysis of nonlinear systems fails in two important ways. 
First, it tells us nothing in cases where the associated linear system has a pair of pure 
imaginary eigenvalues (see Theorem 8). In this case higher order nonlinear terms deter
mine the stability. Second, the linearized analysis tells us nothing about the range of initial 
conditions for which trajectories will decay to an asymptotically stable steady state. All 
that linearized analysis can guarantee is that trajectories starting in a sufficiently small 
neighborhood will decay to an asymptotically stable steady state, but no estimate of 
neighborhood size is provided. 

In a series of deep and elegant theorems published in 1892, the Russian mathematician 
Lyapunov solved the problems inherent in linearized stability analysis by developing a 
geometric interpretation of the state space trajectories defined by the dynamics. His 
results permit us in principle to analyze the stability of any linear or nonlinear dynamical 
system whatsoever, and they provide a means for estimation of the neighborhood within 
which all trajectories decay to the origin (the 'domain of attraction' see below). Finally, 
Lyapunov function theory leads to a generalization of the conservation of energy concept 
so important in theoretical physics. As a result, it is sometimes possible to solve for tra
jectories in state space analytically even when the temporal dependence of solutions can 
only be determined by simulation. As we shall see, Lyapunov functions make it possible to 
analyze neural networks for long-term memory, such as those found in the hippocampus. 
An excellent, in-depth treatment of Lyapunov's work may be found in the book by 
La Salle and Lefschetz (1961). 

14.1 Geometry and evolution of state functions 

In order to understand Lyapunov functions, it will first be necessary to develop a number 
of geometric concepts associated with the states of a dynamical system. Although these 
concepts generalize to any size system, it will help in visualizing them if we restrict 
examples to two-dimensional dynamical systems defined by the phase plane variables x 
and y. A state function of the system is any scalar function of the system variables 
that has continuous partial derivatives throughout the state space. Using U(x,y) as a 
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two-dimensional example, suppose that: 

U = 3x2 + xy + y2 (14.1) 

The partial derivatives of U, denoted by OU/dx and dU/dy, are obtained by treating all 
variables other than the differential variable as constant while performing the differ
entiation. Thus, the two partial derivatives of U are: 

—^ = 6x+v, and — = x + 2y (14.2) 
dx ay 

As both partial derivatives are continuous for all x and y, U is a state function of the 
system. However, the function U = \/(.x + y) is not a state function, as the partial 
derivatives are discontinuous wherever (x + y) = 0. 

State functions are valuable in analyzing differential equations because they create a 
landscape of hills and valleys in the state space. We will mainly be concerned with valleys 
and whether trajectories flow downward to steady states located at the bottom. First, 
therefore, let us define a mathematical valley with a steady state at the bottom. The key 
concept is that of a positive definite state function in a region R of state space: 

Definition: 
definite in 

(a) F'(.\'o) = 
(b) U(x) > 

A state 
a region 
= 0 and 
0 m R if 

function U(x) 
R surrounding 

X 7^ A',). 

in 
an 

an A-dimensional state 
internal singularity An 

space 
f: 

x is positive 

Consider a simple dynamical system with a unique singular point at the origin: 

d.v 2 

— = —x — y — ixy 

dv 
— = - r + A 
d? 

This might be considered to be a nonlinear version of the retinal negative feedback circuit 
in Chapter 3, as (14.3) differs only by the addition of the nonlinear term in the dx/dl 
equation. Both of the following functions satisfy the definition of positive definite state 
functions around the origin: 

Ui = x2 + r 
(14.4) 

U2 = x- + t- - y4 

For U\ Ihe region R includes the entire plane, while the region within which U2 is a 
positive definite state function is limited by \y\ < 1. Evidently, positive definite state 
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functions are not unique, so many different ones can be defined in different regions 
enclosing each singular point of a dynamical system. 

Given a positive definite state function U defining a mathematical valley around a 
singularity, let us determine whether trajectories of the system flow downhill to the 
singularity at the bottom. This requires calculation of the temporal change of a positive 
definite state function along trajectories of the system. As U(x,y) does not explicitly 
include time, it can vary with time only as a result of the time variation of x and y as the 
system evolves. This can be calculated using the partial derivatives of U. 

dU OUdx dUdv , „ r , 
— = 1 4.5 
d? dx dt dv dt y ' 

As d.v/d? and dy/dt are always determined by the dynamical equations of the system as 
explicit functions of A and y, (14.5) can be evaluated exactly at any point in the phase 
plane. Taking the dynamics from (14.3) and U\ from (14.4) as an example, evaluation of 
(14.5) produces the result: 

dlh „ dx „ dp 
-r-L = 2 v 7r- + 2i'7F-d? d? " d? ( H 6 ) 

= -2A- : - 6x2y2 - 2 r 

Thus, at any point in the state space dU\/dt can easily be calculated. Equation (14.5) 
readily generalizes to an A-dimensional system with variables x, as follows: 

— = F,(x] •••xN) 

6U A < " E uu 
_,dx~, 

(14.7) 

F, 

14.2 Lyapunov functions and asymptotic stability 

These ideas may now be related to the asymptotic stability of an equilibrium point in the 
following intuitive way. A positive definite state function in a region surrounding an 
equilibrium point at A0 defines a mathematical valley with x0 as its lowest point. If all 
trajectories of the system flow like water down to the bottom of the valley, all will end up at 
x0. This, however, satisfies the definition of asymptotic stability: all trajectories within a 
neighborhood of a singular point approach it as ? -> oo. These ideas are made precise in 
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the Lyapunov Function Theorem: 

Theorem 12 (Lyapunov Functions): Consider an A-dimensional dynamical system 
defined by the equation: 

£-*> 
Let U(x) be a positive definite state function of the system in a region R 
surrounding an equilibrium point at .Y0. If either of the following conditions is 
satisfied by dU/dt evaluated along trajectories, then .Y0 is asymptotically stable: 
(a) dU/dt is negative definite within R, or 
(b) dU/dt < 0 in R, but except at x = x0, all trajectories passing through points 
where dt//d? = 0 return to regions where dU/dt < 0. 

A state function U satisfying the conditions of Theorem 12 is called a Lyapunov 
Function in honor of its discoverer. A state function is negative definite in a region sur
rounding a singular point if U< 0 within R except at the singularity where U = 0. 

The Lyapunov function V defines a mathematical valley with Xo as its absolute mini
mum point. Condition (a) of the theorem states that all trajectories will flow down to XQ 
like water seeking its lowest point if d U/dt < 0 along these trajectories. Our evaluation of 
dU] /dt in (14.6) produced a negative definite function in the (.v. y) plane, so trajectories of 
the system in (14.3) satisfy condition (a) of the theorem for any region enclosing the 
origin. It follows from the Lyapunov Function Fheorem that the equilibrium point at the 
origin of (14.3) is asymptotically stable. 

Condition (b) generalizes Fheorem 12 to the case where trajectories pass through 
regions where dU/dt = 0 so long as they subsequently re-enter regions where dU/dt < 0. 
To complete our metaphor of trajectories as water flowing down the sides of a state space 
valley, condition (b) means that trajectories may briefly enter a lake where flow is level so 
long as they eventually enter an outlet stream again flowing downhill from the lake. 
Recall discussion of the Hopf bifurcation theorem in Chapter 8. The van der Pol equation 
(8.13) was analyzed exactly at the bifurcation point where the linearized eigenvalues were 
purely imaginary. The equations at this point are: 

d.v_ 

dy~}
 2 2

 ( R 8 ) 

— = — UJ x - x y 
dt 

It is easy to verify that (0,0) is the only steady state and that linearized analysis cannot be 
applied because of the pure imaginary eigenvalues. However, the positive definite state 
function U = (UJ2X2 + y2) has the time derivative along trajectories: 
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Thus, dU/dt < 0 except on the x and v axes, where dU/dt = 0. When y = 0, dy/dt ^ 0 
except at the origin, so trajectories at points where y = 0 must move into regions where 
dU/dt < 0. Similarly, when A = 0, d.v/d? f= 0 (again excluding the origin), so trajectories 
must again move into regions where dU/dt < 0. This satisfies condition (b) of Theorem 
12, so (7is a Lyapunov function for eqn (14.8) in the (v, v) plane, and the steady state al the 
origin is asymptotically stable. A Lyapunov function has thus enabled us to prove the 
asymptotic stability of an equilibrium point under conditions where a linearized analysis 
fails. 

Lyapunov functions define a topographic landscape associated with the trajectories of 
a dynamical system, and this enables us to develop an even more powerful theorem 
concerning asymptotic stability. First recall that the linearized stability analysis embodied 
in Fheorem 8 only proves that trajectories originating sufficiently close to an asympto
tically stable steady state will approach it as ? —» oo. However, Fheorem 8 says nothing 
about the meaning of 'sufficiently close.' Lyapunov functions remove this restriction 
because they define all points of the valley within which the equilibrium point lies. 
Intuitively, therefore, you might guess that any trajectories originating within the walls of 
the valley would flow downhill to the equilibrium point. This intuition is basically correct, 
but to make it precise we must define the domain of attraction or domain of asymptotic 
stability (synonymous terms) of a singularity at An. 

Definition: The domain of attraction of an asymptotically stable singular point at 
xo is the region of the state space defined by the set of all states a, such that if 
,v(?) = fl for any ?, then x(t) —> XQ as ? —> oo. 

As trajectories cannot intersect in an autonomous system, the domain of attraction is 
simply the set of all points on all trajectories that approach the equilibrium point at Ay 
asymptotically. Earlier examples, such as short-term memory networks, have shown that 
many nonlinear systems have more than one asymptotically stable equilibrium point, so 
the domain of attraction of any given equilibrium is generally only a portion of the state 
space. Otherwise stated, a nonlinear dynamical system can have many valleys sur
rounding different equilibrium states with ridges of mountains separating them. 

Let us assume that we have found a Lyapunov function U for an equilibrium point of a 
dynamical system at XQ. By definition a Lyapunov function must satisfy Theorem 12, 

Therorem 13: Let U'x) be a Lyapunov function in a region R surrounding an 
equilibrium point at XQ. Then there is a range of constants o• > 0 defining the 
regions U(x) < a with the properties: 
(a) (7(A) < a is a region enclosing XQ but no other singularities; and 
(b) U(x) < a lies entirely within R. 
Then K = max(a) defines a region DA bounded by (7(A) = A' within which all 
trajectories approach x0 asymptotically. 
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> o 

Fig. 14.1 Circular contours of U\ in (14.4), a Lyapunov function for (14.3). One trajectory of (14.3) is shown 
by the heavier line and arrow. 

so U will delimit a region R within which the conditions of the theorem hold. 
From this information one can prove that a constraint U < K defines a subregion DA 

contained within the domain of asymptotic stability of An. 
The key concept implied by this theorem is that of a closed contour in two dimensions, or 
a spheroidal surface in higher dimensions, that encloses the equilibrium point. So long as 
the region within this contour lies entirely within R, Theorem 12 guarantees that all 
trajectories within the region will decay asymptotically to the equilibrium point. 
Regarding f7 as defining a topographic valley with equilibrium at the bottom, the con
stant K in Theorem 13 is the highest point on the valley walls from which nothing can flow 
out of the valley. Although you might guess that DA would encompass the domain of 
attraction, this is generally not true. This is because DA depends not only on the dyna
mical equations of the system but also on the choice of Lyapunov function, which is not 
unique, as the following example will show. Thus DA will usually define only a subregion 
of the total domain of attraction of a given equilibrium. 

The feedback dynamics in eqn (14.3) have already been analyzed using the Lyapunov 
function U\ from (14.4). From the evaluation of dt'i/d? in (14.6), it was shown that U] is a 
Lyapunov function within the entire (A, T) phase plane. Contours defined by U\ = a are 
simply circles surrounding the origin, as shown in Fig. 14.1. Fherefore, the domain of 
attraction of the singularity tit the origin is the entire phase plane: all trajectories arising 
from all possible initial conditions approach the origin asymptotically. One such tra
jectory is shown moving downhill across the contours of constant U\ by the heavy line in 
Fig. 14.1. 

Estimation of the domain of attraction for (14.3) using U2 from (14.4) gives a much 
different result. U2 itself is only positive definite in the strip Jvj < 1. Fhe derivative of U2 is: 

dc7: 

~d7 
- 6 A V 4v4 - 4.xy3 ; 14.10) 
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Fhis function is clearly negative definite very near the origin, where the two quadratic 
terms dominate, and so it is a second Lyapunov function for (14.3). However dU2/dt > 0 
for all points x = 0, |vj > 1/V-- Without further ado, it is apparent that the domain 
within which U2 is a Lyapunov function must be restricted to some closed contour of U for 
which | r| < 1/^/2. 

This example leads to two conclusions. First, Lyapunov functions for any particular 
dynamical system are not unique. Indeed, there will frequently be an infinite number of 
Lyapunov functions for any given singularity. For example, the Lyapunov function U2 in 
(14.4) can be generalized to: 

U2 = x2 + y2 - ay4" (14.11) 

for any a > 0 and any integer n > 1. All of this infinite class of functions are positive 
definite state functions in regions of varying size surrounding the origin, and all have 
negative definite derivatives near the origin. For each of these functions, however, the 
estimate of the domain of attraction obtained from Theorem 13 will be different. We 
proved above, using U] as a Lyapunov function, that the domain of attraction for the 
unique equilibrium point of (14.3) comprises the entire phase plane. This demonstrates 
that the vast majority of Lyapunov functions that might have been chosen will only prove 
that a small subspace is part of the domain of attraction of the equilibrium. Nevertheless, 
all Lyapunov functions are guaranteed to provide a rigorous boundary on a finite region 
within the generally larger domain of attraction. 

Two further points should be made here concerning Lyapunov functions before 
moving on to consider their application to neural problems. First, Lyapunov also proved 
several instability theorems analogous to Fheorem 13. These will not be considered here, 
as they are almost never used in practice, but those interested are referred to the excellent 
treatment by La Salle and Lefschetz (1961). Second, Theorem 12 states that if a Lyapunov 
function exists within a region surrounding a singular point, then that point must be 
asymptotically stable. Lyapunov (1892) also proved that if a singular point is asympto
tically stable, then a Lyapunov function must exist within some surrounding region. Thus, 
all asymptotically stable singular points have associated Lyapunov functions, and the 
existence of a Lyapunov function is both necessary and sufficient for asymptotic stability. 

14.3 Divisive feedback revisited 

The development of Lyapunov function theory above leaves one crucial question 
unanswered: how does one construct a Lyapunov function for a given dynamical system? 
There is good news and bad. First, the bad: there is no truly general algorithm for con
structing Lyapunov functions. Now the good news: several fairly simple techniques work 
in most situations. One of these techniques will be illustrated here using divisive or 
shunting neural feedback as an example. Divisive feedback has been implicated as part of 
the retinal light adaptation circuitry (Wilson, 1997), and very similar mechanisms appear 
to regulate neural responses in cortical gain control circuits (Wilson and Humanski, 1993; 
Heeger, 1992; Carandini and Heeger, 1994). Based on eqn (6.3), a very simple example of 
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such a circuit is described by the equations: 

d.v 10 
= —A 

d / 1 + - V (14.12) 

^ = - v + 2.v 
d? 

where x and y may be thought of as retinal bipolar and amacrine cell responses respec
tively and the value 10 in the first equation is the stimulus intensity (see Chapter 6). The 
equilibrium states of this system are x = 2, v = 4; and x = -2.5, y = - 5 . Only the first 
equilibrium state has physiological significance, and we proved in Chapter 6 that all 
trajectories originating from initial conditions A > 0. y > 0 must forever remain in the 
first quadrant. Thus we shall restrict consideration to the equilibrium x = 2, y = 4. 

Linearization of (14.12) was used in Chapter 6 to prove that the equilibrium state in the 
first quadrant is asymptotically stable, but that analysis revealed nothing about the 
domain of asymptotic stability. Let us therefore see what we can learn by applying 
Lyapunov function theory. To do so, let us first state a simple theorem about functions of 
a particular form: 

Theorem \A 
continuous 
that the set 

is positive d 
\e\<\. 

: Suppose that F(x, y) and G(x,y) are continuous functions with 
derivatives defined over a region of the x, y plane. Suppose further 
of points where F = 0 and G = 0 is finite. Then the function: 

efinite in 

U(x,y) 

some region 

1 , 
= -F- + e FG+]-G2 

surrounding each point F = 0 , G = 0 as long as 

A proof of this theorem is easy. If; = ±1, U = (\/2)(F± G)~, and U = 0 only when 
F = -G (or F = G). As the only term in U that can ever be negative is eFG, reducing the 
absolute value of; below that required to make U a perfect square guarantees that £7 will 
be positive definite. 

To apply Theorem 14 to the divisive feedback network in (14.12). let us equate Fand G 
with the right-hand sides of the two equations: 

/• = -A + 
l + . r (14.13) 

G = - v + 2.v 

Note that F = 0 and G = 0 are the isocline equations for (14.12), which is the insight 
behind this Lyapunov function method (Wilson and Humanski, 1993). Letting e = 0, the 
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following function is obtained from Theorem 14: 

10 \ 2 1 
U=2\~X+\+~y) +2{-y + 2x^ ( , 4 1 4 ) 

Because F = 0 and G = 0 are the isocline equations for (14.12 ),U is a positive definite state 
function around the equilibrium point at A = 2, v = 4. Because of the definitions of Fand 
Gin (14.13), F= dx/d?andG = dy/dt, so the derivative of U along trajectories takes the 
form: 

— = F ! — + fG — + — + G V 14.15) 
d? dx \dy dx) dy 

A simple generalization of Fheorem 14 shows that any function of the form 
aF2 + bFG + cG2 will be negative definite so long as: 

From (14.13): 

A < 0, c < 0 , \b\ < 2 v V (14.16) 

dF , dG (dF dG\ 10 

a.v a.v VC'F <9-v ( i + y ) -

Thus, by (14.16) dU/dt in (14.15) is negative definite as long as y > \f2l> — 1, a value 
derived from the third equation in (14.17). This completes the demonstration that U is a 
Lyapunov function for the neural system in (14.12) within the region R defined by 
v> \ / l 5 - 1. 

The Lyapunov function in (14.14) may now be used to obtain an estimate of the domain 
of asymptotic stability of the singularity at. v = 2. v = 4 for the divisive feedback system in 
(14.12). Theorem 13 indicates that we need only plot contours of the Lyapunov function U 
and find the largest one that forms a closed curve surrounding the singularity and lying 
entirely within the region R where Uis a Lyapunov function. The program LyapunovFB.m 
plots the contours of U from (14.14) as shown in Fig. 14.2. As R is defined by 
y> \/(2-5) - 1, this value (y « 0.582) can be substituted into eqn (14.14), and the 
minimum value of U(x) determined. This occurs at x « 1.497. Therefore, the largest 
contour of U(x, y) that encloses a region lying entirely in R is (7(1.497, 0.582) = 14.54. 
This contour defines the region DA in Theorem 13 and is indicated in Fig. 14.2 along with 
three representative trajectories of (14.12). Note that DA is actually a very conservative 
estimate of the domain of asymptotic stability, which in fact includes the entire first 
quadrant. However, DA is the best estimate obtainable from the Lyapunov function in 
(14.14). 

The approach to constructing Lyapunov functions using Theorem 14 is generally useful 
given the flexibility in choosing a value of e such that |e| < 1. In two-dimensional systems 
for which linearized stability analysis using Theorem 8 demonstrates the asymptotic 
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Fig. 14.2 Contours of the Lyapunov function (14.14) for (14.12). The outer contour is an estimate of the 
region DA from Theorem 13 that is within the domain of asymptotic stability. Three trajectories of (14.12) are 
plotted by heavier lines with arrows. 

stability of an equilibrium point, there will always be a value oft for which U in Theorem 
14 is a Lyapunov function in a region surrounding the singularity, an observation 
explored in the problems. Theorem 14 can also be generalized to higher dimensional 
systems, but the number of coefficients analogous to s grows rapidly. 

14.4 Conservative systems and predator-prey interactions 

Nonlinear dynamical systems in neuroscience possess equilibrium points that are either 
asymptotically stable or else unstable in virtually all cases. In theoretical physics, how
ever, enormously important insights have been obtained through application of the law of 
conservation of energy, which was discovered by the same Helmholtz who is famous for 
his pioneering research into visual and auditory function (Helmholtz. 1909). The law of 
conservation of energy simply states that the energy (a state function) of an isolated 
physical system will remain constant as the system evolves in time according to Newton's 
laws of motion. Conservation of energy is first of all an idealization, as it requires that the 
energy conserving system be totally isolated from all external forces. In the limit, there
fore, only the universe as a whole conserves energy. Second of all, conservation of energy 
represents only a small subset of nonlinear dynamical systems that conserve more general 
quantities. For mathematical completeness, and because of its intellectual importance 
and elegance, therefore, this section will provide a brief examination of conservative 
dynamics, which may be viewed as a special or limiting case of Lyapunov function theory. 

Although conservative systems have not played a major role in biological or neural 
theory, there are nevertheless several elegant and interesting examples that deserve 
mention. Cowan (1970) developed a conservative formulation of interactions between 
excitatory and inhibitory neurons, while Goodwin (1963) produced an analogous 
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conservative formulation for the oscillations inherent in cellular biophysics. Rather than 
developing these examples here, however, let us explore the original example of a con
servative biological system: the Lotka-Volterra equations (Lotka, 1924). The equations 
will be developed here using Volterra's description of predator-prey interactions. Let us 
assume that a population of wolves, W, survives by catching and eating rabbits, R, on an 
isolated island (such as Isle Royale National Park). The rabbits, being herbivores, are 
assumed to multiply exponentially in the absence of predation by the wolves. The wolves, 
on the other hand, will die out exponentially if there are no rabbits to eat. Assume that the 
frequency of wolves encountering and eating rabbits is proportional to the product of 
their populations RW. Fhen the following equations will describe the population 
dynamics: 

6R 1 
0 . 5 — = R RW 

d' 2 ° (14.18) 
dW 1 

0 . 1 - - = -W+-—RW 
d? 500 

The time constants here are in years and have been chosen to produce equilibrium values 
in a reasonable range. They indicate that it takes roughly 20 wolf-rabbit encounters to 
produce a rabbit kill but about 500 rabbit encounters to provide enough protein (coniglio 
alia cacciatori!) to enable the wolves to reproduce. 

Analysis of the Lotka-Volterra equations (14.18) indicates that the steady states are 
R = 0, W=0, and R = 500, IF =20. The former represents the case where both species 
have died out, while the latter represents the only equilibrium balance between predators 
and prey. The Jacobian of (14.18) shows that (0, 0) is an unstable saddle point, but (500, 
20) produces a pair of pure imaginary eigenvalues. Thus, Theorem 8 tells us nothing about 
the stability of R = 500, W= 20, and we must turn to Lyapunov function theory. In this 
case Theorem 14 does not work (try it if you are skeptical), but eqn (14.18) has a particular 
property that will enable us to derive a positive definite state function directly. To develop 
this method, note first that the right side of each equation in (14.18) can be written as a 
product of a function of A and a different function of v. A general form of which (14.18) is 
a particular example is therefore: 

~ = Fx(x)Fv(y) 
2 (14.19) 
-£ = Gv(.v)G, (.v) 

If the second equation here is divided by the first, the following relationship is determined 
between dv and d.x along trajectories: 

dy = G^WMv) 
d.v Fx(x)Fy(y) ( V> 
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Rearrangement and integration now yields the result: 

Fy(y) f ^ d x + K (14.21) 
Gy(y) • J Fx(x 

where the constant of integration K has been added because indefinite integrals have been 
taken. This proves the following theorem concerning constants of motion: 

Theorem 15: For any dynamical system of the form (14.19) the function: 

rtt \ ( F ^ A [G*WA U{X>y) = lm*y-JF-(x)dX 

is a constant of motion assuming that the integrals can be evaluated. Any 
trajectory in the phase plane with initial conditions (A0, yn) will evolve forever 
along the locus defined by U(x, y) = U(XQ, yo), a constant. 

Thus, when a two-dimensional system such as (14.19) permits solution for a constant of 
the motion, we can determine the locus of trajectories in the phase plane exactly even 
though the temporal evolution of the system can only be approximated using Runge-
Kutta methods. 

Fetus now apply Fheorem 15 to the Lotka-Volterra equations (14.18). Fhe first step is 
to write the functions on the right-hand side as products: 

dR ( 1 
— = 2R 1 W d< \ 2° ' 
dW / 1 > 
— = 10IF -1 +^~R 
dt V 5 0 ° 

where the time constants have also been moved over to the right. The two relevant 
integrals defined by Theorem 15 are now: 

1/20 IF , 1 , 1 
-dIF=—ln(IF W \0W 10 200 

/ ' - l + 1/500/? J r i 1, 1 
/ -1 6R = - - n(/? + R 

J 2R 2 y ' 1000 

(14.23) 

so the function U(R, W) becomes: 

U(R.W)=±WW+\WR)~W-^R (14.24) 
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Fig. 14.3 Contours of constant U(R, W) in (14.24), which are trajectories of the Lotka-Volterra equations 
(14.18). This is a conservative nonlinear system. 

Fhis function is plotted in Fig. 14.3 for several constant values using the MatLab script 
LotkaVolterra.m. It is apparent that all trajectories are stable oscillations about the 
equilibrium point (black dot), which is therefore a center. When the wolf population is 
low, the rabbits multiply rapidly. This, however, provides more food for the wolves, 
whose population now multiplies as they gorge on rabbits. In consequence, the rabbit 
population drops, which leads to a decline in the wolf population. The rabbits now begin 
to multiply rapidly again, and the cycle repeats itself. 

Any oscillation to which Theorem 15 applies is a conservative oscillation, because the 
quantity U(x, v) remains constant along the trajectory. Conservative oscillations are not 
limit cycles, because there are infinitely many conservative oscillations within any given 
neighborhood of each such oscillation. Limit cycles, by definition, are isolated oscillations 
with no other oscillatory solutions within some finite neighborhood. Conservative 
oscillations in nonlinear systems represent the nonlinear generalization of cosine oscil
lations surrounding a center in linear systems. 

There is a simple relationship between conservative oscillations and Lyapunov func
tions. If, as in the Lotka-Volterra example above, all contours <7(.\, y) = A^are closed and 
encircle a center, then U(x,y) can always be transformed into a positive definite state 
function. First, one subtracts the value of U at the equilibrium point or center. Fhe 
resulting function will then be either positive or negative definite in a region surrounding 
the center (this region comprises the first quadrant in the Lotka-Volterra example). If the 
function is negative definite, multiplication by —1 will convert it into a positive definite 
function. Fhis produces a mathematical valley with the steady state as its minimum point. 
Unlike a Lyapunov function, however, trajectories do not flow downhill in this case; 
rather they circulate at a constant elevation on the valley walls. Systems with a constant of 
motion thus are generalizations of the concept of conservation of energy, while systems 
described by Lyapunov functions are ones in which energy is lost through generalized 
'frictional' forces. 
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Before leaving the topic of conservative systems, it should be emphasized that Fheorem 
14 is not applicable to all conservative systems. In physics, conservative systems are 
generally Hamiltonian systems for which the constant of motion cannot be obtained 
using Fheorem 14. Such systems have never found application in biology and will 
therefore be passed over here. Mathematical aspects of Hamiltonian systems are covered 
in any good text on classical mechanics. 

14.5 Long-term memory 

The major context in which Lyapunov functions have been applied in neuroscience is in 
the study of long-term memory networks. Among those developing memory networks 
that are biologically plausible are Kohonen (1989), Hopfield (1982, 1984), and Grossberg 
(1987) (see also Cohen and Grossberg, 1983). Back-propagation networks are con
siderably less plausible biologically and will not be examined here, although Elman et ai 
(1996) have provided some striking insights into development using them. Readers 
interested in the mathematical foundations of back propagation are referred to the 
excellent book by Hertz et al. (1991). 

Long-term memory is generally divided into two categories frequently referred to as 
declarative and procedural. Declarative memory in turn may be subdivided into episodic 
and semantic memory. Episodic memory stores information about important events or 
episodes in our lives along with aspects of the spatial contexts associated with them. Thus, 
many of us still have vivid recollections of our first date with the person we eventually 
married including what they wore, where we ate, etc. Such memories must necessarily be 
encoded in one trial because of the uniqueness of the events themselves. This may be 
contrasted with those procedural memories that can only be acquired with repeated 
practice, such as learning how to ski or play the violin. 

Different brain areas are involved in the encoding and storage of these different types of 
memories. Among the brain areas known to be involved in long-term memory, the 
hippocampus plays a central role in declarative or episodic memory (O'Keefe and Nadel, 
1978; Squire and Zola-Morgan, 1991). Classic studies have shown that humans with 
severe hippocampal damage form no long-term memories after the time of the damage, 
although episodic memories from earlier periods of their lives remain intact. The hip
pocampus is thus believed to store and consolidate episodic memories for a period from a 
few days to a few weeks before the information is transferred back to higher cortical areas 
(eg. inferior temporal cortex in vision) for permanent storage. Thus, hippocampal 
damage disrupts any further episodic memory storage but does not destroy memory 
information already permanently laid down in the cortex. 

In 1949 Donald Hebb proposed that long-term memory storage required the 
strengthening of synapses contingent upon concurrent presynaptic and postsynaptic 
activity. If neurons i and j fire at rates /?, and /v; during episodic learning, therefore, the 
Hebb Rule implies that the weight of the synaptic connection between them would 
become: 

w,, = kR,Rl (14.25) 
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Years of research into the physiological basis of Hebb synapses has led to a general 
consensus that NMDA receptors are involved in both the hippocampus and cortex. As 
summarized by Bliss and Collingridge (1993), NMDA receptors can only be activated if 
two events occur within about a 100-200 ms time window. First, the presynaptic neuron 
must release the transmitter glutamate as a.result of presynaptic spike activity so that it 
can bind to NMDA receptor sites. Second, the postsynaptic cell must be depolarized 
sufficiently to remove Mg2+ ions that normally block NMDA receptor channels. Elegant 
recent experiments have demonstrated that action potentials triggered at the axon hillock 
of hippocampal neurons actually propagate back up the major dendrites as well as along 
the axon (Magee and Johnston, 1995, 1997; Johnston et ai, 1996; see Chapter 15). This 
postsynaptic dendritic spike activity is currently thought to provide the depolarization 
necessary for NMDA receptor activation. Following NMDA receptor activation, further 
chemical events within the postsynaptic cell lead to synaptic potentiation that lasts for 
hours or even days in the hippocampus (Bliss and Collingridge, 1993). Although these 
final postsynaptic chemical events are not yet well understood, it is nevertheless clear 
that NMDA receptors provide a physiological basis for the Hebb (1949) synapse. 

The model of long-term episodic memory to be developed here is based on the circuitry 
of the CA3 region of the hippocampus. The circuitry of this area is shown in the beautiful 
anatomical drawings of Cajal (1911) reproduced in Fig. 14.4A and schematically in 
Fig. 14.4B. In addition to receiving synapses from external axons originating in other 
parts of the brain, CA3 hippocampal neurons have extensive recurrent axon collaterals 
that synapse onto many of the neighboring CA3 neurons. These recurrent synapses 
shown by open arrowheads in Fig. 14.4B, contact the apical dendrites of CA3 pyramidal 
cells. These recurrent synapses in CA3 will be assumed to be modifiable according to a 
Hebb rule. In addition to this recurrent excitation, all of the hippocampal output axons in 
the model also contact an inhibitory interneuron that provides recurrent subtractive 
inhibition to all of the hippocampal pyramidal cells (neuron G in the diagram). Marr 
(1971) was one of the first to propose a hippocampal model involving both recurrent 
excitation via Hebb synapses and inhibition. 

During pattern learning, external axon inputs cause some model CA3 pyramidal cells 
to become active, and the Hebb synapses between each pair of active neurons are then 
modified. For simplicity in the current implementation, the Hebb Rule was used in the 
form: 

wij = kH(R, - 0.5M)H(R, - 0.5M) 

where 

H(x) = {l
Q * > ° (.4.26) 

In this expression M is the maximum firing rate of the neurons (100 spikes/s in the 
simulation). Thus the Hebb synapses in the model are strengthened only when both 
presynaptic and postsynaptic neurons are firing at greater than half their maximum rates. 
Furthermore, the synapse changes to a fixed value k when modified. The version of the 
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Fig. 14.4 Recurrent CA3 hippocampal network. The anatomical diagram in A is from Cajal (1911), while the 
schematic in B depicts the connectivity of the neural model in (14.27). Recurrent collaterals contact other 
pyramidal cells with Hebbian synapses (open arrowheads), and all pyramids generate inhibitory feedback via 
the G interneuron. For clarity, only a subset of connections is shown. 

Hebb Rule in (14.26) thus imposes both a threshold for modification and a saturation on 
the strength of each synapse, and it requires concurrent presynaptic and postsynaptic 
activity for modification to occur. This form of Hebb Rule was first employed in the 
associative memory model of Willshaw et al. (1969). Once modified by learning, a Hebb 
synapse in the model is assumed to remain in its strengthened state for the duration of the 
simulation. As pairs of neurons are reciprocally interconnected, (14.26) implies that the 
synaptic connections will be modified identically: it',, = w„. This symmetry of Hebbian 
modified connections has been assumed by both Hopfield (1982, 1984) and Cohen and 
Grossberg (1983), and it will be adopted here. 

The CA3 network simulated here incorporates 256 pyramidal cells in a 16 x 16 array 
plus one interneuron providing feedback inhibition. Each of the 256 pyramidal cells 
provides recurrent Hebb synapses onto apical dendrites of the other 255 pyramids but not 
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onto itself. Thus, each CA3 pyramid has one synapse from an external axon, 255 mod
ifiable Hebb synapses from the other CA3 pyramids, and one inhibitory synapse from the 
interneuron. Using spike rate descriptions of the neurons, the dynamical equations for the 
network are: 

dR, „ 1 0 0 ( £ ^ «•„/?,-0.1G); 
\0—L=-Ri + 

dt ""' ' a2 + (T,2-, wijRj - 0.1G)2, 

dG ^ 10 -af=-G + sER' 
i=i 

where i = 1, 256. The time constants have been set to the reasonable value of 10 ms, 
and the semi-saturation constant a = 10. The modifiable synaptic weights wtj = 0.016 if 
the synapse has been modified during training and are zero otherwise. Finally, the inhi
bitory interneuron G has input synaptic weights g = 0.076. 

As observed by Rolls and Treves (1998), the recurrent collaterals of CA3 cells suggest 
that CA3 hippocampus is an autoassociative network. This means that stimulation by a 
portion of any previously learned pattern will cause the network to recall the entire 
pattern. The CA3 autoassociative network described by eqn (14.27) is implemented in the 
MatLab script CA3memory.m. The network has learned to recognize four different 
patterns by modification of the Hebb synapses according to (14.26), each pattern being 
represented by activity in 32 CA3 neurons. If you run CA3memory.m, you can choose 
which of the four patterns to recall. As a stimulus to the network, the program randomly 
selects a block equal to about one-third of the pattern (10-12 active cells) and degrades 
this partial image with noise consisting of 20 randomly activated cells. Four external 
inputs generated in this manner are shown in the left column of Fig. 14.5. The program 
then simulates (14.27) for a total of 100 ms, plotting the active neurons as white on gray 
throughout the computation. As shown by the results in the right column of Fig. 14.5, the 
network invariably recalls the entire learned pattern while eliminating all of the noise from 
the input image. Note that the external input remains on for only the first 20 ms of the 
simulation, so the final network output not only recalls and completes the pattern, it also 
retains the recalled information in short-term memory as a pattern of self-sustained 
neural activation! 

If you run CA3memory.m several times with each pattern, you will see that a range of 
different inputs varying in the nature of the added noise will all generate each correct 
output. This means that the network generalizes from novel stimuli to the most similar 
stimulus in its previous experience provided that the similarity is great enough (about 
33% in this model)! In addition to describing the generalization inherent in memory, this 
may also account for the deja vu (literally, 'already seen') experience wherein a novel 
situation is experienced as being remembered. This is particularly salient in recall of the 
pattern 'Assoc' illustrated at the bottom of Fig. 14.5, where a novel stimulus containing 
information about one of the three elements in the memory record evokes the entire 
memory of the additional associated elements. 

Before turning to a mathematical analysis of (14.27), a few final comments concerning 
CA3 hippocampus and the model are in order. Regarding storage capacity, calculations 
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Fig. 14.5 Patterns stored in CA3 model via Hebb synapses (right column) and examples of noisy inputs (left 
column) that triggered their recall by CA3memorY.m. 

developed by Hertz et al. (1991) and by Rolls and Treves (1998) indicate that the 256 
neuron CA3 network can store about 12 patterns with 32 neurons active in each. You can 
save and recall an additional pattern in the CA3 model by running the script CA31earning.m 
(see Exercise 5). Estimates for human hippocampus, which contains about 3 x 106 neu
rons, range from about 50 000 to 70 000 on the assumption that only 1-2% of CA3 
neurons are active in any given memory (Rolls and Treves, 1998). Given around figure of 
1000 minutes awake per day (16.67 hours), this corresponds to storage of a memory every 
12 s for 10- 14 days, the typical range of storage in the hippocampus. Thus, a scaled-up 
version of our model would have a capacity appropriate to the human hippocampus but 
would take impossibly long to simulate on most computers! Finally, note that each pair of 
patterns in Fig. 14.5 shares several active neurons with each of the other stored patterns. 
Inhibitory feedback from the G neuron in (14.27) suppresses units weakly activated by 
this cross-talk. This works effectively so long as the active units common to any pair of 
patterns represent a relatively small percentage of the entire patterns. Brain areas pro
viding input to CA3 are believed to contain networks that minimize overlap between 
patterns to be stored in CA3 (Rolls and Treves, 1998). 
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Let us now see how Lyapunov functions can be used to prove that the stored patterns 
are asymptotically stable steady states of the dynamical equations (14.27). For simplicity, 
let us first focus on the two-neuron short-term memory system developed in Chapter 6. In 
the present context, these neurons are assumed to have formed mutually excitatory 
connections through previous modification of Hebb synapses. The resulting equations 
are: 

, djRi 100(0.25/?,)-; 
10 — - = -R] + i i l + = F t R R 

d? o2 + (0.25R2)
2

+ 

dR, 100(0.25/?,): 
10 — ^ = -R, + - i - = F, (R],R, 

d> (T- + (0 .25 /v , ) ; 

'14.28 

The modified s t rength of the H e b b synapses in this case is 0.25, and <r= 10 as in (14.27). 
The function designat ions F | and F2 simply provide a convenient means of referring to the 
right-hand sides of these equa t ions . It is easy to show that these equa t ions have three 
equilibrium poin ts at (0 .0) , (20 ,20) , and (80, 80). T o find a L y a p u n o v function for (14.28), 
let us choose a state function in agreement with T h e o r e m 14 that is positive definite a b o u t 
each equilibrium point : 

U = \(F] + F\) (14.29) 

where F] and F2 are defined in (14.28). The derivative of U along trajectories of (14.28) 
may now be calculated to be: 

dU „, „, „ „ fdF] dF 

dt-^-^ + ^AdRf+dRj (1430) 

The right-hand side of this expression is again in the form in Theorem 14, except that the 
right-hand side has been multiplied by - 2 . Therefore dU/dt will be negative definite 
throughout any region where the following is satisfied: 

OF] dF, „ 

dR2
+W]<2 ( 1 4 3 1 ) 

Note that the absolute value sign is not necessary here, as both partial derivatives must 
always be positive or zero from the definitions in (14.28). A sufficient, although slightly 
conservative, condition for (14.31) to be satisfied is: 

dF] , dF, , 

d<[ and m<[ (1432) 
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Both partial derivatives can be evaluated directly from (14.28) using (6.10). In the first 
case in (14.32) the result is: 

dF] 25o2R2 

2 \(0.25R2)
2+o2 

T < 1 (14.33) 

A plot of (14.33) is shown by the dashed line in Fig. 14.6B, where it is evident that the 
inequality is satisfied both for R2 > 48.5 and for R2 < 8 (regions shaded in gray). Iden
tical considerations apply to the second inequality in (14.32). 

Let us now put all these considerations together. Figure 14.6A plots contours of the 
positive definite state function f7from (14.29), and a three-dimensional surface plot of U 
is illustrated in Fig. 14.7. The MatLab script LyapunovCA3.m produces an animation of 
the 3D surface representation rotating to provide a better feel for its shape (Uhas been 

100 
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Fig. 14.6 Contour plot (A)and cross-section (B)of the Lyapunov function?' in (14.29) for (14.28). Gray regions 
indicate where AVjdt < 0, and the heavier marked contours show the estimates of DA from Theorem 13. 
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compressed by plotting U03 to emphasize its shape near the minima). This positive 
definite state function has three minima, one at each equilibrium point of (14.28). Within 
the region defined by R{ > 48.5 and R2 > 48.5 we have shown that dU/dt in (14.30) is 
negative definite. This region is plotted in gray in Fig. 14.6A. Therefore, U is a Lyapunov 
function for the equilibrium point at (80,80). Theorem 13 may now be used to obtain an 
estimate of the domain of attraction for this equilibrium. As indicated in Fig. 14.6A, this is 
the largest closed contour (7 = a that encloses (80, 80) and falls entirely within the gray 
region where dU/dt < 0. All trajectories originating within this droplet-shaped region are 
guaranteed to approach (80,80) asymptotically. The same analysis indicates that all 
trajectories originating within the indicated region surrounding (0,0) will asymptotically 
approach (0,0). Thus, we have obtained finite (rather than infinitesimal as is the case with 
linearized analysis) estimates of the domains of attraction of these two equilibria. This 
also proves rigorously that this memory system will generalize, because any input pattern 
generating an initial condition within the domain of attraction of (80,80) will lead 
asymptotically to the same final state, thus recalling the same stored pattern. 

Our analysis is not applicable to the third steady state, which is a saddle point at (20,20), 
because dU/dt > 0 near this point. The Fyapunov function U is moot regarding the fate 
of trajectories originating within any of the white regions of the phase plane in Fig. 14.6A. 
This is because contours U = a originating in these regions surround all three steady 
states, and thus they encompass zones where d U/dt > 0. The three-dimensional view of U 
in Fig. 14.7 suggests that all trajectories will flow down to one of the two asymptotically 
stable steady states, but the dividing line between the global domains of attraction of the 
two cannot be ascertained given this particular Lyapunov function. Thus, U defined in 

yo.3 

100 

Fig. 14.7 Surface plot of the Lyapunov function (14.29) that was also illustrated in the previous figure. Note 
the three minima at the steady states. 
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(14.29) provides rigorous but conservative (i.e. small subregions) estimates of the 
domains of asymptotic stability. 

The two-dimensional system in (14.28) is a special case of a more general A-dimen-
stonal neural network formulation due to Cohen and Grossberg (1983): 

d.v, _ 1 
d? ~ r,(x,) 

b,{xi) + YjwijSj(Xj) 
/=' 

14.34) 

where i = 1,..., A, and Sj (A,) is a sigmoidal function such as the Naka-Rushton or 
logistic function. System (14.28) is a two-dimensional example of (14.34) where T, is a 
constant, and b,(x,) = -A , . Equation (14.34) differs somewhat in form from (14.27), as 
the summation of synaptic inputs in (14.27) occurs within the argument of the sigmoidal 
function, while (14.34) contains summation over sigmoidal functions. However, the two 
formulations are very closely related. The Cohen-Grossberg (1983) theorem defines a 
Lyapunov function for (14.34) under the following conditions: 

Theorem 16 (Cohen-Grossberg): 
system (14.34): 

(a) ir„ = Wji 

(b) T,(X,) > 0 for all i; and 

(c) dSi(xi)/dx, > 0 for all/. 
Then the following function is a L 
space: 

A' /VY, 

Let the following 

yapuno1 

dS,(x) 
' d.v 

three conditions 

' function for (14.34) through 

- i.k=\ 

and dU/dt < 0 except at steady states of the system. 

WjkSf xf)Sk{xk) 

be true for 

out the state 

The theorem is proved by computing dU /dt along system trajectories: 

;=i 

Symmetry condition (a) of the theorem is required to derive this equation. Conditions (b) 
on r, and (c) on dSfdx, now guarantee that dU/dt < 0 except when the expression in 
brackets vanishes. Reference to (14.34) shows that this can only happen at steady states of 
the system. Note that condition (c) on the slope of Sj simply requires that it be a mono-
tonically increasing function, a condition satisfied by both Naka-Rushton (for x > 0) 
and logistic functions. 
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As emphasized by Ermentrout (1998), the Cohen-Grossberg (1983) theorem is very 
general and includes the Hopfield (1984) network and others as special cases. As an 
example, let us apply Theorem 16 to the network in (14.28) by identifying T, as a constant, 
b,(xj) = -Xj, and tr,, = 1. The Lyapunov function in the theorem requires evaluation of 
integrals of the following form: 

x—: d.v = XjSi'ax,) 
d.v 

100A, 
IOOCT fax, 

arctan — 
a V a 

14.36) 

where 5, is the Naka-Rushton function in (14.28) and the factor of 100 is simply the 
maximum value of that function. This result was obtained using standard integral tables 
(Gradshteyn and Ryzhik, 1980). Given this result, the Lyapunov function of Theorem 16 
for (14.28) becomes: 

U(x,y) 
100A(0.25A) 

100 + (0.25.x) 

- 100y + 4000arctan(0.025i 

100A- + 4000arctan(0.025.v) + 

100(0.25.v)2 

100y(0.25y)-

100+ (0.25;/ 

100(0.25y)2 

100+ (0.25.v)- 100 + (0.25y; 

14.37) 

where x and v have been substituted for the variables R] and R2 in (14.28). (Note that 
(14.37) must have a constant value -(7(80, 80) = 742.8 added to make it positive definite 
throughout the state space.) Contours of U may be obtained from the script 
CG_Lyapunov.m and are plotted in Fig. 14.8. Comparison of this figure with Fig. 14.6 
indicates that the estimated domain of attraction Z)A obtained using Fheorem 13 is much 
larger for the Lyapunov function in (14.37) than for the function in (14.29). Furthermore, 

100 

Fig. 14.8 Contours of the Cohen-Grossberg Lyapunov function (14.37). Note that this Lyapunov function 
produces considerably larger estimates of the domain of attraction, DA, of (14.28) than those in Fig. 14.6. The 
contours bounding DA are closed beyond the region shown. 
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the Cohen-Grossberg theorem guarantees that the system cannot have a limit cycle, as 
dU/dt < 0 everywhere except at the steady states. These results indicate the power of the 
Cohen-Grossberg (1983) theorem. 

Let us now return to analyze the CA3 hippocampal model defined by (14.27). Because 
(14.27) is not in the form required by Theorem 16, let us adopt a generalization of the 
Lyapunov function in (14.29): 

<7 = ^ f > ; + ^ / / : (14.38) 
1=1 

where F, is the function on the right-hand side of the /th dR,/dt equation in (14.27) and H 
is the right-hand side of the dG/d? equation. Differentiating U along trajectories of 
(14.27) yields: 

Satisfaction of condition (14.32) defines regions within which the double sum terms will 
be small enough so that dU/dt < 0. Similarly, it can be shown that |g + dF,/dG\ < 0.7. 
Thus U is a Lyapunov function for any equilibrium state in which R, > 50 for M of the 
neurons (32 in this model) and R, = 0 for the remaining neurons. 

The relevance of inhibitory feedback mediated by the G neuron in (14.27) may now be 
clarified. The model parameters guarantee that all 32 active neurons in a pattern will 
reach an equilibrium firing rate of 80. You can verify this by substitution back into (14.27) 
remembering that each of the 32 active neurons receives recurrent excitation from the 
remaining 31 (i.e. no self-excitation). In addition, all neurons receive an inhibitory signal 
of —0.1G = - 19.5 in the steady state. When several patterns are stored in the network, as 
in CA3memory.m different patterns will frequently have a few active neurons in common. 
As long as two patterns share 15 or fewer units, however, inhibition from the G neuron 
will completely suppress the response of inappropriate neurons initially excited due to 
pattern overlap. You may notice this when running CA3memory.m. as parts of several 
patterns are sometimes initially activated by the input but are subsequently suppressed by 
inhibition. Thus, the network permits up to about a 46% overlap between distinct pat
terns stored in memory. Obviously the less overlap the better, however, and it has been 
suggested that cortical circuits in several brain areas are designed to minimize overlap 
among neural activity patterns before storage in regions such as CA3 hippocampus (Rolls 
and Treves, 1998). 

14.6 Dynamic temporal memories 

The autoassociative CA3 hippocampal model just developed evolves to an asymptotically 
stable steady state following brief stimulation with a noisy portion of a previously learned 
pattern. While such a memory network may encode a learned face or place, we are also 
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capable of remembering complex temporal sequences, such as skilled motor control (e.g. 
canoeing or piano playing) or musical themes (e.g. the ABC jingle by which many children 
learn the alphabet). In these cases, it seems natural to suppose that the memory is encoded 
in the form of an asymptotically stable limit cycle capable of cycling through the learned 
time sequence over and over again. Kleinfeld (1986) and Sompolinsky and Kanter (1986) 
simultaneously suggested the basic way in which this could be accomplished. These 
authors began with an autoassociative network like the CA3 model but added a second set 
of synaptic connections that conducted information from presynaptic to postsynaptic 
neurons with a time delay. (Recall from Chapter 4 that time delays frequently lead to 
oscillations.) Hertz et al. (1989) showed how such time delays could be made compatible 
with Hebbian synaptic modification, thereby establishing the biological plausibility of the 
concept. Accordingly, the development here is based on their work. 

Suppose that neurons in the CA3 model are interconnected by several sets of modifiable 
Hebb synapses: for one set axonal conduction and synaptic events occur extremely 
rapidly (as was assumed above), while for each additional set there is a progressively 
longer delay before synaptic activation. Such delays are known to be a constituent of the 
neural apparatus for auditory localization (Carr, 1993), and Hertz et al. (1989) summarize 
evidence for the existence of axonal conduction delays as long as 100-200 ms. At a 
modifiable synapse at which the presynaptic activity has a delay of A, the simple Hebb 
rule in (14.25) takes the modified form: 

wy = kRi(t)Rj(t - A) (14.40) 

and an analogous modification can be made to (14.26). Note that synaptic strength tr,, 
depends on contemporaneous pre- and postsynaptic activity; the time lag A results from a 
delay in reaching the synapse. Whereas synapses between neurons for which A = 0 will be 
symmetric: w,, = 117,, when A > 0 each pair of neurons will be coupled asymmetrically. 
Thus, if a network is trained to recognize a sequence of patterns A-B-C, synapses 
modified by learning among the neurons encoding A will be symmetric, while synapses 
from pattern A to pattern B neurons will be asymmetric with A neurons activating B but 
not the reverse. This combination of symmetric and asymmetric neural interconnections 
is the key to sequence learning via Hebb synapses. 

These concepts are incorporated in the MatLab script DynamicMemory.m. The net
work is the same as the CA3 network depicted in Fig. 14.4, except that the recurrent axon 
collaterals activate two sets of synapses: an effectively instantaneous one and a set with a 
time delay. Based on the development in Chapter 4, the delay is modeled by four expo
nential delay stages, each with a time constant r = 8 ms. The network has been trained via 
Hebbian rules to recall one static pattern (a cartoon face) and one dynamic sequence of 
three patterns. As you will discover by running the script, the network recalls the face to 
active working memory in response to an appropriate noisy input, but it settles into a limit 
cycle replaying the learned temporal sequence when the input is related to any one of 
the patterns in that sequence. The spatial neural activity states in the three patterns of 
the dynamic sequence successively spell MO-VE-A2, which may be construed as the 
neural code for either a skilled muscular movement or a particular movement in a 
musical piece. 
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The dynamical basis for the stored limit cycle MO-VE-A2 is quite easy to understand. 
The symmetric synaptic connections among active neurons in each individual pattern 
serve to make it temporarily asymptotically stable in the same manner as each of the 
patterns in the CA3 network above. After a time delay, however, these neurons activate 
neurons in the next pattern of the sequence via asymmetric connections and cause them to 
begin firing. Recurrent inhibition in the network mediated by the G neuron now becomes 
sufficiently strong to set up a competition between the previous and current neural pat
terns, and the latter wins because of its additional delayed stimulation by the former. This 
sequence of events is shown in Fig. 14.9, where the response of a neuron unique to each 
pattern in the sequence is plotted. Fhus, the limit cycle encoded in this dynamical memory 
operates via a sequence of bifurcations in which the asymptotic stability of each stored 
pattern is ultimately destroyed by competition with the next pattern that it triggers fol
lowing a delay. (You can increase the competition and make the transitions between 
patterns in the dynamic memory more abrupt by increasing the value of the inhibitory 
gain to g — 0.11, but this does produce too much inhibition for the static pattern stored in 
memory to remain stable.) 

Fhe autoassociative memory models above incorporate the basic features of excitatory 
and inhibitory interactions that were developed in Chapters 6 and 7. The recurrent 
excitatory connections in the CA3 model are the product oflearning according to a Hebb 
rule for synaptic modification. They cooperatively reinforce firing of other neurons in a 
pattern, which results in pattern completion, recall, and maintenance of the pattern in 
short-term memory. Inclusion of additional synapses with delays leads to a stored limit 
cycle in which a sequence of bifurcations result as each stored dynamic pattern loses a 
winner-take-all competition (mediated by the inhibitory cell) to its successor. Hertz et al. 
(1989) have shown that inclusion of synapses with multiple delays leads to a quite 
sophisticated dynamic memory. More detailed models of motor memory (Lukashin 
et ai, 1996) and hippocampal dynamics (Samsonovich and McNaughton. 1997) have 
recently been developed using similar basic principles. Lyapunov functions provide the 
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Fig. 14.9 Limit cycle response of three neurons in the dynamic memory program DynamicMemory.m. Each 
neuron is active in only one of the three patterns in the memory cycle (MO. VE, or A2). 
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mathematical basis for understanding how all these networks achieve their memory 
storage capabilities. 

14.7 Exercises 

1. Determine which of the following functions U are positive definite state functions of a 
system defined on the (A,V) phase plane. Assume that the system has a singularity at the 
origin. For each function that is positive definite, determine the region R within which this 
property holds: 

<7 = A2 + xy + y2 

U = 3x2 + 4y2 - y3 

U = 10.v4+.Yy+ 10y4 

2. Consider the following dynamical system: 

d.v 
= 

d? 
dy 
d? " 

i 
— A" 

-2y 

+ 

-

s 
y 

xV 

Prove that the function U below is a Lyapunov function for the singularity at the origin. 
Based upon U, estimate the domain of asymptotic stability. 

4 4 

4 4 

3. Consider the following linear negative feedback system: 

^ = - 3 A + 2V 
d? 
d.v , 
— = V - 2A-
d? ' 

Use Theorem 14 to find a Lyapunov function and prove that the domain of asymptotic 
stability is the entire {x, y) phase plane. (Note: you will have to find an appropriate range 
of values of £ to satisfy the theorem; remember that Lyapunov functions are not unique.) 

4. Consider the following predator-prey equations for the ecological relationships 
between wolves (W) and moose (M): 

™ = M-\MW2 

d? 16 

d? 81 
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The squared terms here might arise from the requirement that it requires two wolves to kill 
a moose and eating of two moose to permit a wolf to reproduce. After solving for the 
equilibria, use Theorem 15 to derive a constant of motion for this system. Using MatLab 
script LotkaVolterra.m as a guide, plot several trajectories surrounding the center. (Hint: 
determine a useful range of values for your constant of motion by first evaluating it at the 
relevant steady state.) 

5. Use the program CA31earning.m to determine the effects of storing an additional 
pattern via Hebbian learning. First, determine the effect of storing another pattern that is 
very different from any of the four presently in storage. Next, design a pattern that is quite 
similar to one of those presently stored. For example, design a pattern that is identical to 
the $ shape in the upper left of the 'Assoc' pattern but differs in its remaining elements. 
How does this interfere with pattern recall? Next, determine how noise level affects 
pattern recall. What is the lowest noise level in pixels at which the probability of corrupted 
pattern recall is greater than 50%? 

6. Consider the following two-neuron memory system: 

d.v 100 
= -5x + -d? 1 + e~y 

dv 100 
-5v + -d? ' l+e--v+10 

These equations are similar to (14.28), except that they employ the logistic function rather 
than the Naka-Rushton function to describe spike rates. First, solve for the steady states, 
which will require using MatFab procedure fzero as discussed in the Appendix. Now use 
Theorem 16 to derive a Lyapunov function for the system (this will require integral 
tables). Using CG_Lyanpunov.m as a guide, make a contour plot of this function and use it 
to estimate the domain of attraction of the higher steady state using Theorem 13. 
7. The autoassociative memory net for dynamical patterns depends critically on two 
factors: the strength of excitation via the delayed synapses, and the strength of the 
recurrent inhibition mediated by the G neuron. In the program DynamicMemory.m these 
parameters are set respectively to Wdelay = 0.008 and g = 0.076 (see 14.27). For each 
parameter independently determine the smallest value that will still produce a limit cycle 
following stimulation by the first dynamic pattern with no added noise. For each para
meter indicate what is recalled when the parameter becomes too small, and give a 
dynamical explanation of the result. 



15 Diffusion and dendrites 

All equations considered thus far have been ordinary differential equations, as there is 
only one independent variable, namely time. However, many problems in neuroscience 
involve interactions in both space and time. One major example is the spread of a post
synaptic potential along a dendrite to the cell body. A second example is the propagation 
of an action potential along an unmyelinated axon. These processes are controlled by the 
diffusion of ions within the dendrite and axon. Even communication between neurons 
involves synaptic diffusion of neurotransmitters between cells. In this chapter, therefore, 
the dynamics of diffusion processes will be explored, including the nonlinear diffusion 
inherent in action potential propagation. As will be seen, solutions to the diffusion 
equation can be reduced to solutions of ordinary differential equations with which we are 
already familiar. In a sense, therefore, we have already learned how to solve the diffusion 
equation. 

In its earliest incarnation, the diffusion equation was developed by Fourier (creator of 
Fourier analysis and an engineer in Napoleon's army) to describe the conduction of heat 
along a wire. Diffusing ions will, of course, generate electrical currents, and these obey the 
cable equation, which is mathematically identical to the diffusion equation (and to the 
heat equation). As Rail (1989) has pointed out, the cable equation was so named because 
it was derived by Lord Kelvin to predict electrical transmission along the first transat
lantic telegraph cable. The first applications of the diffusion or cable equation to neurons 
were by Hodgkin and Rushton (1946) and by Davis and Lorente deNo (1947). The most 
extensive and elegant application of cable models since that time has been the work of 
Wilfrid Rail (1962, 1967, 1989), who pioneered the study of postsynaptic potential pro
pagation through electrically passive dendritic trees. Most recently, the recognition that 
many processes in dendrites are inherently active and nonlinear has resulted in the 
development of compartmental models of dendrites (see Segev et ai, 1989). Compart-
mental models represent approximations to nonlinear diffusion processes in dendrites. 

15.1 Derivation of the diffusion equation 

To derive the diffusion equation, suppose that there is some chemical species whose 
concentration C varies with both position and time. Furthermore, let us assume that this 
chemical is confined within a very long, thin cylinder so that C effectively varies only with 
the distance x along the cylinder. Thus, the concentration will be a function of A and ?. In 
order to derive an equation for the spatio-temporal variation of C(x, ?), let us focus on 
Fig. 15.1. Here a section of the thin cylinder within which diffusion occurs has been 
divided into three adjacent compartments, each of length Ax. Focusing on the center 
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C(x-Ax, t) C(x, t) C(x+Ax, t) 

FL FR 

Fig. 15.1 Schematic of three adjacent compartments in a long, thin cylinder along which a substance with 
concentration C(.v, t) is diffusing. FL and FR represent fluxes into the center compartment from the adjacent 
ones. 

compartment, it is clear that the chemical can flow across both the left and right 
boundaries, thereby altering the local concentration, C(x, 1). The technical term for the 
rate of flow across a boundary is flux, and the two fluxes will be denoted by FE and FR. It 
has been established empirically that the flux between neighboring compartments in a 
cylinder is directly proportional to the concentration difference, with the diffusing 
chemical flowing from the higher concentration to the lower. Moreover, the flux is 
inversely proportional to the distance Ax over which the concentration difference occurs. 
Putting these empirical results together gives us the following: 

^C(x + Ax,t)-C(x,t) 
TR = A T 

A 'v (15 1) 
^ C ( A , ? ) - C ( A - - A A - , ? ) 

ry = - A 
A.v 

where Ais the diffusion constant. The second equation has a minus sign, because flow into 
the center segment will only occur if C(x — Ax, t) > C(x, ?). Intuitively, the flux will 
increase as the cross-sectional area of the cylinder increases, so A'will be proportional to 
this area. The net change in concentration C(x, t) due to flux within the cylinder is the sum 
of the two fluxes in (15.1). 

In addition to the changes in C(x, t) that are produced by flux within the cylinder, some 
of the diffusing ions may leak out of the cylinder through the membrane. Within the ith 
compartment of the cylinder, the amount that will leak through the membrane will be 
proportional to Cand to the length of each compartment A.v (because membrane surface 
area depends on A.v). To complete derivation of the diffusion equation, it is only 
necessary to combine the effects of flux and loss through the membrane. As C(x, t) is a 
concentration variable, its rate of change will depend on the total amount of chemical in 
the compartment, which is A.v C(x, ?), so: 

A.v — = FR + FL - Ax MC (15.2) 
ot 

In this equation 8C/dt indicates that this is a partial derivative with respect to ?. As A.r 
is independent of I, it is treated as a constant with respect to the ? differentiation. Thus, 
eqn (15.2) states that the rate of change of concentration in the /th compartment is the sum 
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of the fluxes across the compartment boundaries minus the quantity lost through the 
membrane. Combination of (15.1) and (15.2) gives: 

dC _ K 

~dt~ Ax 
C(x + A.v, ?) - C(x, t) C(x, t) - C(x - A.v, ?) 

A.v A.v 
- MC (15.3) 

In the limit as A.v —> 0, the expression in square brackets becomes the difference of two 
derivatives taken at adjacent spatial points. As this difference is divided by A.v, this limit 
becomes the derivative of a derivative, which is the second derivative. Thus, we have 
derived the diffusion equation, which is: 

d^ = K^-MC (15.4) 
at ax1 

This equation states that the rate of change of C in time is equal to K times the second 
derivative of its change with position along the cylinder minus the rate of loss by leakage 
through the membrane. 

In describing dendrites, we generally deal with the membrane potential V rather than 
the ionic concentrations that produce that potential. Furthermore, it is conventional to 
divide through by M so that (15.4) assumes the form: 

8V ,d2V 
dt ox-

D2f-f-V (15.5) 

In this form, known as the cable equation, r is a time constant and D is a constant termed 
the length constant for reasons that will be apparent shortly. The dependence of D on 
dendritic radius R is easy to derive from the following simple considerations. The pro
portionality constant K of the flux term in (15.1) and (15.4) will vary directly with the 
cross-sectional area of the cylinder: K = g\irR2, where R is the dendritic radius andg, is the 
conductance inside the cylinder. Loss through the membrane, determined by the constant 
M, will be proportional to cylinder circumference: M = gm2irR, where gm is the leakage 
conductance through the membrane. Because D = ^/(K/M), it follows that: 

(15.6) 

Thus, the length constant increases with the square root of dendritic radius R. 

15.2 Steady state solution 

Although the cable equation (15.5) is a partial differential equation involving both x and ? 
as independent variables, it can be solved exactly using the techniques developed in 
studying ordinary linear differential equations. The first step in solving ordinary differ
ential equations is to determine the steady states by equating all time derivatives to zero. 
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The same approach can be used to obtain the steady state behavior of the cable equation. 
Setting dV /dt = 0 in (15.5) produces the equation: 

D2%K-V=0 (15.7) 
d.v-

Note that the derivative with respect to x is now an ordinary derivative rather than a 
partial derivative, because V is independent of ? in the steady state. Equation (15.7) is 
simply a second order linear differential equation which can be solved by finding the 
eigenvalues (Fheorem 2) with the result: 

V=At-x/D + Bex/D (15.8) 

The constants A and B must be chosen to satisfy the boundary conditions for the cable 
equation. Boundary conditions are the spatial analog of initial conditions in time, as 
boundary conditions specify the values of V (or its spatial derivatives) at the ends 
(boundaries) of the cylinder along which diffusion is occurring. For the present, let us 
assume that the potential is maintained constant at A = 0 so that F(0) = VQ. Assuming 
that the cylinder is very long with respect to D, which effectively means that it is .onger 
than about 5/J, there is little loss of accuracy if it is treated as effectively infinite. The 
second boundary condition will then be F(oo) = 0 . and (15.8) becomes: 

V=V0e-x'D (15.9) 

Fhis solution to the cable equation (15.5) reveals why D is referred to as a length constant. 
D plays the same role with respect to space in the solution as a time constant does in the 
solution of an ordinary linear differential equation: ('decays to 1/e of its maximum at 
A = D. 

One of Rail's (1962, 1989) major contributions to the theory of dendritic potentials was 
to derive conditions under which a complex dendritic tree could be represented as a single 
equivalent cylinder. The complexity of dendritic trees arises because dendritic segments 
closer to the cell body (proximal dendrites) split at intervals into several smaller daughter 
dendritic segments as illustrated schematically in Fig. 15.2. Let us consider a point at 
which two daughter dendrites with radii of r\ and rejoin a parent dendrite of radius/?, as 
depicted in Fig. 15.2B. Rail's insight was to realize that if the flux of a diffusing ion was 
conserved at such dendritic junctions, then the daughter dendritic cylinders could be 
collapsed into a single cylinder of the same radius as the parent dendrite. Using the 
definition of flux in (15.1) in the limit as A.v —» 0 and the steady state equation for V in 
(15.9), the flux through the end of the parent dendrite is: 

Kfx = - l V (,510) 

In terms of Ohm's law, the constant A'is the ionic conductance, while d V/dx is the voltage 
difference between adjacent points along the dendrite, so the product KdV/dx is an 
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Soma Dendrites^ 

Fig. 15.2 Stereotypical dendritic tree in A with a single branch point magnified in B. 

ionic current (if dF/d.Y = 0, there is no current flow). Thus, the flux of a diffusing ion is 
identical to the resultant electrical current. 

The discussion leading to (15.6) indicated that K = g\irR2, namely, flux is proportional 
to dendritic cross-sectional area. Combining this expression with that for D from (15.6) 
yields an equation for the dependence of flux on dendritic radius R: 

dV 
K—=-^2g~g^TTRi'2V (15.11) 

d.v 

Thus, the ionic flux or current exiting or entering the end of the parent dendrite is pro
portional to R-/2. Similar considerations may be applied to each of the daughter dendrites 
to show that the flux where they join the parent will be proportional to their radii raised to 
the 3/2 power. Rail (1962) observed that if the sum of the fluxes entering the daughter 
dendrites was equal to the flux exiting the parent, the daughters were mathematically 
equivalent to an extension of the parent dendrite. Assuming that the constants g, (internal 
conductance) and gm (membrane leakage conductance) are identical for both parent and 
daughter dendrites, equality of fluxes across the dendritic junction is guaranteed if the 
following equation is satisfied: 

R3'2 = rf +rf (15.12) 

Note that rt and r2 need not be identical to satisfy the equation. It should also be men
tioned that all terminal dendritic branches must be the same electrotonic distance from 
the soma in order to collapse them into a single cylinder (Rail, 1989). Equation (15.12) 
can easily be generalized to equality of fluxes across a dendritic junction with N 
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Fig. 15.3 Dala (reproduced with permission) from Bloomfield et al. (1987) showing that Rail's (1962) 
requirement in {15.13) is a good approximation. The abscissa is the diameter D of the parent dendrite, while 
the ordinate is the ratio D ~ Z / ' " where d are the daughter dendritic diameters. A ratio of 1.0 (—) agrees 
with (15.13). Data on two neuron types are shown. 

emergent daughter branches with radii r„: 

*3/2 = £ ' « / 2 
15.13) 

If (15.12) or (15.13) does not hold, there will be a build-up of ionic concentration on one 
side of the dendritic junction, in which case the dendritic tree cannot be simplified into a 
single cylinder. However, anatomical measurements such as those by Bloomfield et al. 
(1987) in Fig. 15.3 indicate that (15.13) is a good approximation in many areas of the 
brain. 

15.3 Separation of variables 

The steady state solution of the cable equation (15.5) reveals nothing about the dynamical 
properties of important neuronal events, such as postsynaptic potentials. To obtain 
dynamical information, (15.5) must be solved directly. In 1807 Joseph Fourier, discoverer 
of Fourier analysis, had an insight that resulted in an exact solution to (15.5). This was the 
hypothesis that the dependence on space and time could be represented by a product of 
functions of v and ?, that is: 

V(x, ?) = //(x)G(t) 15.14) 
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To show that this assumption solves (15.5), let us substitute (15.14) for I'(x, ?). The result 
is: 

, dG , d2H 
THJt=D~Gd^-GH ( 1 5 1 5 » 

Note that the assumption in (15.14) reduces the partial derivatives in (15.5) to ordinary 
derivatives. If the term Gil is moved to the left side and (15.15) is divided by GH, the result 
is: 

T dG D2 d2H 
G d ? + l = 7 7 d A T ( 1 5 1 6 ) 

The left side of (15.16) is now a function only of?, while the right side is a function only of 
x. The only way this can possibly be true for all values of ? and x is if each side of (15.16) is 
equal to the same constant, which will be called -/3 (the minus sign is convenient, not 
essential). Setting each side equal to -/3now reduces (15.16) to two ordinary differential 
equations: 

T dG , 
G d , (15.17) 

D2 d'H ' 
H d.\-

These separate equations for ? and x may now be further rearranged algebraically to 
generate the results: 

T ~ + ( 1 +/J)G = 0 
' , (15.18) 
d'H+ % - 0 
d^ + Z J ^ - 0 

Thus, assumption (15.5) that V = H(x)G(t) reduces the cable equation to the two 
ordinary, linear differential equations in (15.18). This procedure is known as separation of 
variables, as it leads to separate equations in A and ?. Although separation of variables 
might seem like a mathematical trick, mathematicians have proven that the solution to the 
cable equation is unique. Given this, Fourier's deep insight that V ~ H(x)G(t) reduces the 
cable equation to a unique pair of equations that are easily solved. It will be seen in a 
moment that the seemingly arbitrary constant (5 is actually determined by the physiology 
of the desired solution. 

In order to solve (15.18) we must specify initial conditions, just as in solving ordinary 
differential equations. However, the initial condition is now a spatial distribution of 
concentrations at ? = 0, V(x, 0) = H(x). In addition, we are again confronted with 
boundary conditions, because it is necessary to specify how the ionic concentration or 
potential behaves at the ends or boundaries of the cylinder. In arriving at (15.9) above for 
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the steady state, the cylinder was assumed to extend from x = 0 to x = oo. On the more 
reasonable assumption that the cylinder is of total length L and extends from -L/2 to 
+L/2, boundary conditions require specification of some functions of V(-L/2, t) and 
V(L/2, ?). Fhe way in which these functions are chosen depends on the physiology of the 
problem. Suppose that we wish to solve (15.18) for the case where the chemical cannot 
diffuse through the ends of the cylinder. Fhis is equivalent to specifying that the flux is 
zero at the end points, termed a zero flux boundary condition, so: 

H H 
— = 0 forA = ±L/2 (15.19) 
d.v 

Solving the second equation in (15.18) gives: 

/ / (A) = . 4 C O S ( X / 3 ^ ) (15.20) 

where A is an arbitrary constant (sine terms can also be included, see below). In order to 
satisfy the zero flux boundary condition (15.19), it is necessary to choose 0 to produce an 
integer number of cycles n of the cosine function along the length L of the cylinder: 

S-I-2-Y (15.2, 

Thus, the boundary conditions constrain 0 to assume only discrete values determined by 
the integer n. With this value for b, (15.20) becomes: 

// i - . . i l 2 ^ ] i: : : 

where the subscript on A„ indicates that a different value of this constant may be chosen 
for each n. 

To complete the solution of (15.5), 0 from (15.21) is substituted into the dG/dt equation 
in (15.18), which can now be easily solved for G(t): 

G ( ? ) = e ^ e x p ( - - ^ ) (15.23) 

The separation of variables assumption (15.14) indicates that the solution to the cable 
equation (15.5) is V(x,t) = G(t)H(x), so: 

, , ,,T * ^ /-4TT2n2D2l\ (2irnx\ 
F( .Y,? )=e- ' ^ ]T / .» e x P n cos - — (15.24) 

H=i 

Summation over n has been included here, because each GH product for a given value of 
/; independently solves (15.5). Hence, a sum of such products is also a solution. The 
astute reader may have observed that sine terms are also part of the general solution in 
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(15.20) and (15.22), and this is correct. Appropriate sine terms would then also be added 
into the general solution in (15.24) (see Exercise 2). 

The initial conditions on a cable equation solution specify a distribution 
V(x,0) = / / (A) . The greatest achievement of Fourier was to prove that the values A„ can 
be chosen to fit any initial distribution H(x) that is physiologically possible. The repre
sentation of a function as a sum of cosines and sines is accordingly termed a Fourier series 
representation. Development of the mathematics of Fourier series is outside the scope of 
this book, but excellent treatments are available elsewhere (e.g. Gaskill, 1978). 

Examination of the solution to the cable equation in (15.24) reveals that the high spatial 
frequencies defined by large values of n decay much more rapidly than the lower fre
quencies, because the constant in the time exponential is proportional to if. This can be 
seen in the MatLab animation Diffusion.m, which starts with an initial distribution that is 
the sum of cosine frequencies /; = 1 and n = 5 in (15.24). Consistent with the time 
dependence of (15.24), the frequency n = 5 variation in the initial distribution dies out 
much faster than the lower frequency;; = 1 variation. In running the script, you may also 
notice that the overall level of V declines with time, which is a consequence of the term 
e~'lT that multiplies the entire solution. Reference back to the derivation of (15.5) and the 
solution by separation of variables shows that this term results from leakage of the dif
fusing ion through the membrane. In the case of a dendrite, V will ultimately decay back to 
the resting potential of the neuron. 

15.4 Passive dendritic potentials 

Dendrites are often sufficiently long relative to the length constant D so that they can be 
treated as infinite for the purposes of mathematical analysis. This leads to consideration 
of solutions to the cable equation (15.5) for the case where the boundary conditions are 
F(±oo, ?) = 0. This assumes that the potential V represents the deviation of the dendritic 
potential from the resting potential. Furthermore, we are assuming that locations where 
postsynaptic events cause local changes in V are sufficiently far from the ends of the 
dendrite that conditions at the ends make little contribution to the solution. If the den
dritic geometry is such that equation (15.13) is satisfied (see Fig. 15.3), we may follow Rail 
(1962, 1989) and treat the entire dendritic tree as a single long cylinder. 

In order to solve the cable equation for an equivalent cylinder model of a dendritic tree, 
it is necessary to consider how postsynaptic potentials diffuse away from a synapse. 
Suppose, therefore, that there is a synapse located at A = 0 which is briefly active at ? = 0 
resulting in the local postsynaptic potential being elevated to F0. If the dendrite is infi
nitely long in both directions, the solution can be obtained from (15.24) in the limit as the 
dendritic length L —» oo. In doing this, it is appropriate to define a new frequency variable 
w = n/L, so u> becomes a continuous variable as L —> oc. In this limit the summation in 
(15.24) becomes an integral and the solution is: 

/•oo 

V(x, t) = e~'/T / ^ M e x p ( - 4 7 r V D2t/r)cos(2iTu>x)duJ 
Jo 
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Note that the coefficients A„ in (15.24) become a continuous function A(u>) in this 
equation. 

For the case of an idealized synaptic input at x = 0, Fourier analysis can be used to 
prove that A(u>) = 1 for all UJ. In this case the integral above can be evaluated exactly 
(Gradshteyn and Ryzhik, 1980), and the result is: 

e''lT (-Tx2\ 
F(.v,?)=- , exp — r - 15.25 

2Dx/f^T ^\4D2tJ y ' 

It can be verified that this is a solution to the cable equation by substitution back into 
(15.5) and evaluation of the derivatives. V(x, t) in (15.25) at first appears to behave rather 
strangely when ? = 0. If x — 0, V(0, 0) is infinite, while V(x f 0.0) = 0 everywhere. 
However, (15.25) has a very important property that clarifies the situation. This property 
becomes obvious if V(x, t) is integrated with respect to x while treating ? as constant: 

,-\pi - ^ - ) d.x = e"'/T (15.26) 
2Dyhi/i 4D2t 

Thus, at ? = 0, the area under V(x, t) is unity, and this area decreases exponentially with 
time as ions leak outward through the membrane. At ? = 0. (15.25) is therefore an 
example of a Dirac (1958) 8 function, which was encountered briefly in the discussion of 
time delays at the end of Chapter 4. In the context of dendritic potentials. V(x, ?) in (15.25) 
represents the potential change at an idealized synapse where a fixed number of ions have 
entered the postsynaptic cell in an infinitesimally small region. Thus, the local potential is 
formally infinite, although the total number of ions that have entered is finite as given by 
the integral in (15.26). 

To see how (15.25) can be used to calculate the effects of postsynaptic potentials dif
fusing passively down a dendrite, suppose that a synapse at point X] is active at t\ and 
produces a potential change \\ relative to the resting potential. The appropriate solution 
to the cable equation for an idealized infinite dendrite is now: 

/ e-0-( | ) / r 
exP(^r-rr.—rr I for ? > ?, n^)=\2D^Ai-h)/r\^2(t-tV)) " " ^ " (15-27) 

0 for i < i] 

This is just (15.25) with the origin shifted to x = A; and the time of the synaptic event 
shifted to t = t\. Fhe MatLab script Dendrite.m produces an animation of F(.v, ?) in 
(15.27) as the potential change diffuses outward from a local synaptic site. The simulation 
incorporates a time constant r = 10 ms and a length constant D = 100 um. In evaluating 
(15.27), it is convenient to begin with ? > t\ by a small amount, 10 -s ms in this case, to 
avoid problems at i = 0. On the assumption that the soma is located at v = 0, Dendrite.m 
permits you to explore (he effect of synapses at various distances from the site of spike 
generation. Figure 15.4 plots the relative potential changes at the soma (x = 0) produced 
by equal strength synaptic events occurring 25, 50, and 100 urn away. As is apparent from 
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Fig. 15.4 Potential change at soma due to potential propagation along a passive dendrite. Initial synaptic 
events occurred at 25, 50, and 100 pm from the soma, and curves were computed using (15.27). 

the figure, passive diffusion along the dendrite causes the potential change at the soma to 
be much smaller and to peak later (0.25 ms for x = 25 urn; 3.0 ms for x = 100 urn) as the 
distance from soma to synapse increases. As the length constant D = 100 pm in this 
example, it is apparent that synapses located much farther than one length constant from 
the soma will have a negligible effect in generating spikes (try running Dendrite.m with 
x = 200 um). In fact, this analysis of passive dendrites using cable theory suggests that 
synapses located more than one length constant from the soma will generally have only a 
minor, subthreshold biasing effect on the excitability of the neuron. Conversely, synapses 
close to the soma will have a very powerful and rapid effect on spike activity, which is 
probably the reason that inhibitory GABA synapses are generally close to the somas of 
cortical neurons (Colonneir, 1968; Scheibel and Scheibel, 1970). Cumulative effects of 
multiple synaptic events at various locations are explored in Exercise 3. 

15.5 Diffusion-reaction equations 

The cable equation (15.5) is a linear partial differential equation describing passive dif
fusion of ions along dendrites. However, recent research has revealed that apical dendrites 
of many neocortical and hippocampal pyramidal cells contain active, voltage-sensitive 
ion channels (Stuart and Sakmann, 1994; Magee and Johnston, 1995; Johnston et ai, 
1996), similar to those responsible for action potential propagation along axons. To 
understand active propagation along axons and dendrites, it is necessary to consider 
nonlinear diffusion processes. Let us therefore consider the simplest nonlinear general
ization of (15.5): 

dV , d2V 
T ~ = D2^T + F(V) 

dt dx2 
(15.28) 
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Fhis is just the linear diffusion equation with a general term F(V) added. The simple case 
where F(V) = -V is just the cable equation (15.5). If F(V) is nonlinear, however, eqn 
(15.28) is called a diffusion-reaction equation, and striking new phenomena can emerge. 
This name implies that diffusion of V across space triggers local nonlinear chemical (or 
ionic) reactions characterized by F( V). In an axon, for example, we shall see that F( V) can 
describe the voltage-dependent opening of Na+ channels. Diffusion-reaction systems 
can also involve several equations of the form (15.28), each describing the diffusion of a 
different chemical or ion that reacts with the diffusing substances described by the other 
equations. 

As with most other nonlinear dynamical problems, the diffusion-reaction equation 
(15.28) can seldom be solved analytically. Nevertheless, we are frequently interested in the 
existence of particular types of solutions. One diffusion -reaction solution of particular 
importance is a traveling wave that propagates with constant velocity and shape, such as 
an action potential along an unmyelinated axon. Denoting position by A, time by ?, and 
propagation velocity by v, a solution to (15.28) F(.v. ?) is a traveling wave if: 

F(.Y, ?) = F(.v±r?) (15.29) 

The function on the right side is of constant shape but shifts its position to the left or right 
with time depending on whether it is a function of (A + v?) or (x — vt). 

Under what conditions will a diffusion-reaction equation have traveling wave solu
tions of the form (15.29)7 The answer is obtained by defining a new variable ~ 

z = x+vt (15.30) 

The transformation of variables defined by (15.30) has the effect of placing us in a 
coordinate frame that is moving at exactly the speed of the propagating wave that we wish 
to study. (Note that z = x - vt could also be used.) You might wonder what constant 
velocity v should be chosen in defining z. The appropriate v will be seen to emerge from an 
analysis of the diffusion-reaction equation if any solutions of the form (15.29) exist. 

To see how transformation to the variable z simplifies the problem of finding traveling 
wave solutions to the diffusion-reaction equation, notice first that (15.30) transforms the 
partial derivatives with respect to space and time as follows: 

dV dV d2V d2Y 
7 7 7 = " - - ; v r v = T = (15.31) 
dt dz Ox- dz-

Fhus, transformation to variable r reduces the partial derivatives to ordinary derivatives, 
and the diffusion-reaction equation (15.28) therefore becomes: 

dV , d : F 
rr7rr = Z)" -T-r + ^ t n (15.32) 

So, the diffusion-reaction equation has been reduced to an ordinary second order 
differential equation that can be studied using familiar phase plane techniques after 
transformation into normal form. In particular. (15.32) may have multiple equilibrium 
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states. If so, there may be a unique trajectory that originates at (i.e. infinitesimally near) 
one steady state for z —> -oo and approaches a second steady state as z —» +00. Such a 
trajectory connecting two equilibrium points is called a heteroclinic trajectory. Typically, 
such a trajectory will exist only for a unique value of the velocity v. Under these conditions 
the heteroclinic trajectory defines the shape of a traveling wave for the diffusion reaction 
equation (15.28). Let us collect these observations into a theorem and then see how it may 
be applied to action potential propagation. 

Theorem 17: Consider the diffusion-reaction equation: 

where F(V) is nonlinear and transform into the two-dimensional ordinary differ
ential equation in z = x + vt: 

dV 

d^ = ±i(rvW-F(V)) 

If this system has more than one equilibrium point, and a heteroclinic orbit joins two 
equilibria for some critical value v = vc, then the original equation has traveling 
wave solutions that move at velocity vc. Furthermore, this heteroclinic trajectory 
defines the shape of the traveling wave. 

15.6 Action potential propagation 

Theorem 17 seems abstruse in many ways. After all, it is usually impossible to solve 
analytically for trajectories in the state space of nonlinear systems. However, it is only 
necessary to demonstrate the existence of a heteroclinic orbit for some particular vc; we do 
not necessarily have to solve for its shape directly. Moreover, in the case of the Hodgkin-
Huxley approximation in (9.7), it is possible to solve for the shape of the traveling wave 
front as well as for its velocity. The analysis developed here has been adapted from 
FitzHugh's (1969) analysis of spike propagation in the FitzHugh-Nagumo equations. 

The diffusion-reaction equations describing the generation and propagation of action 
potentials are a simple generalization of (9.7): 

0.8 — = D2 — - (17.81 +47.71 F + 32.63V2)(V- 0.55) - 26.0R(V+ 0.92) 
dt dx (15.33) 

— = — (-R + 1.35V+\.03) 
dt \.9y 
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All that has been added to (9.7) is a term describing the diffusive spread of the membrane 
potential Fin the first equation. If (15.33) is transformed to a moving coordinate system 
with the substitution z — x+ vt, it is easy to see that the result will be a system of three 
coupled first order differential equations. However, previous analysis of (9.7) revealed 
that dV/dt > dR/dt during the rising phase of each spike. Accordingly, let us assume 
that R remains constant at its equilibrium value during the rising phase of the spike and 
focus on the changes in V. Fhis separation of time scales will enable us to study the 
propagation of the leading edge of the action potential, although it will not, of course, 
allow us to examine the recovery phase, which is driven by R. Accordingly, let us set 
R = 0.088, the equilibrium value of R, and transform (15.33) into the moving coordinate 
frame z = x + vt. Fhe results of this transformation converted to normal form are: 

d F 
Jz = W 

(15.34) 
dW _ 0.8vH' +(17.81 + 47.71 I' + 32.63F2)( I' - 0.55) + 2.288( F + 0.92) 
~d?= D-

Although the values of v and D have not been specified yet, neither enters into the cal
culation of steady states, because W = 0 is one isocline. Using the MatLab roots function, 
the steady states are found to be: (0, - 0.704), (0. - 0.692). and (0, 0.484). Linearized 
stability analysis reveals that the first and third of these points are unstable saddle points, 
while the intermediate one is an asymptotically stable spiral point. The isoclines of (15.34) 
are plotted in Fig. 15.5 using the critical value of v to be derived presently. 

As indicated in Fheorem 17, there will be a traveling wave solution to (15.33) if there is a 
critical value of the velocity v that results in a heteroclinic trajectory connecting the first to 
the third of the equilibria of (15.34). Let us therefore consider the equation for a trajectory 
in the phase plane, which is obtained by dividing the two equations in (15.34) to obtain a 
single equation for d W/dV: 

dIF (17.81 + 47.71 V+ 32.63V2)(V- 0.55) + 2.288(F+ 0.92) 0.8v 
= - -A ( 1 5 3 5 ) 

dF Eft IV D- [ ' 

The cubic expression on the top can now be written as a product of the three roots 
determined by solving the isocline equations: 

dW 32.63(F+0.704)(F+0.692)(F- 0.484) 0.8r 
dT = ~D^V~ ~ + -fr (15'36) 

This cubic differential equation has the following general form: 

dW _a(V-r)(V-s)(V-h) bv 
dV D2W D- [ ' 

where /-, s, and It represent the resting steady state, stable steady state, and highest steady 
state respectively. 
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Phase plane for (15.34) with r,s, and h defined in (15.37). The heteroclinic trajectory moves from 
point at /• to the one at h. This trajectory defines the leading edge of the propagating action 

FitzHugh (1969) published the solution to (15.37) describing action potential propa
gation, and in a different context Grafstein (1963) credited the solution to unpublished 
work by Huxley (see Exercises). Based on that work, let us prove that the solution to 
(15.37) is: 

IF: -A(V-r)(V-h) (15.38) 

Thus, IF is a parabola that originates at the resting equilibrium point r and terminates at 
the highest equilibrium point h (see Fig. 15.5). The constant A is not arbitrary and will be 
determined as part of the solution. Calculation of d Wjd Fand substitution of (15.38) into 
(15.37) yields: 

Algebraic rearrangement of this equation leads to the expression: 

(-2A2D2 +a)V= -A2D2(r + It) + as + Abv [15.39) 

The left-hand side of this equation is a function of V, while the right-hand side is just a 
collection of constants. The only way that (15.39) can be true for all V, therefore, is if A 
and v are chosen to guarantee that each side vanishes identically. Equating the coefficient 
of Fto zero and the right-hand side to zero produces two equations that are easily solved 
for A and v: 

1 
A = D 

and 
D(h + r-2s) fa 

b V2 ; 15.40) 
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Note that A and therefore v can be either positive or negative, depending on the sign of 
s/(a/2): positive signs correspond to leftward motion and negative to rightward. This 
determines the unique values of A and v that produce a traveling wave solution to (15.34). 
The parameter values are easily determined by comparing (15.37) with (15.36): 
a = 32.63; A = 0.8; r = -0.704;.? = -0.692; and It = 0.484. Choosing a plausible value 
for the diffusion length constant D = 0.25mm, r = 1.47mm/ms,orl.47m/s, a reason
able value for unmyelinated axons. Similarly, A = 16.16. These values were used in 
plotting the isoclines and heteroclinic trajectory in Fig. 15.5. 

Substitution of the values above into (15.38) provides an explicit solution for W. Recall, 
however, that W = d V/dz from (15.34), where z = x + vt. Thus, the equation for V(z) is: 

dJ-=-A(y-r)(y-h) (15.41) 
dr 

The solution to this equation can be found in standard integral tables (Gradshteyn and 
Ryzhik, 1980) and involves the hyperbolic tangent (tanh): 

F = , + ^ ( l + t a n h ^ - y + V ? m (15.42) 

where A and v are given by (15.40), and x + vt has been substituted for z. This is an 
analytical solution for the leading edge and velocity of the action potential produced by 
(15.33). Depending upon whether A and Tare positive or negative, the wave moves to the 
left or right. In front of the wave, V = r, the resting potential, while after the wave passes 
V = h, the maximum wave height (see Fig. 15.6). 

To summarize, we have used Theorem 17 to prove that the Hodgkin-Huxley 
approximation in (15.33) will produce spikes that travel with constant velocity and shape 
along an axon. The leading edge of these propagating spikes is a traveling wave solution to 
the diffusion-reaction equation. As a check on the accuracy of the solution in (15.42), it is 
interesting to compare it with a simulation of the full diffusion-reaction system in (15.33). 
Before doing so. however, a brief digression on numerical methods is in order. 

Simulations of diffusion-reaction equations depend on numerical methods derived 
from Taylor series approximations in ways analogous to those developed in Chapter 5. 
Expanding the diffusion reaction equation (15.28) to lowest order in both partial deri
vatives, as in Euler's method, produces the formula: 

F(A,? + A ? ) = F ( A , ? ) + ^ ( D ^ ^ ^ ^ 
T { (Ax) J 

(15.43) 

where A? and A.v are the temporal and spatial intervals between adjacent points. The 
expression on the right divided by (Ax) is just the discrete approximation to the spatial 
second partial derivative. As discussed by Press et al. (1986), it is necessary (although not 
always sufficient in nonlinear problems) that A? and A.v be chosen to satisfy the following 
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inequality in order for the simulations to converge to meaningful results: 

2AtD: 

r(A.v)-
r < 1 15.44) 

Although it is easy in principle to choose values of A.v and A? satisfying (15.44), in practice 
this may result in an extremely large number of very small time steps and a very long time 
for computation. More complex approximation methods that partially alleviate this 
problem are developed by Press et al. (1986), and the interested reader is referred to that 
treatment. 

The diffusion-reaction equation for action potential propagation (15.33) has been 
simulated in MatLab script Spike_Propagate.m using the approximation method in 
(15.43). Parameter values were r = 0.8 ms from (15.33), D = 0.25 mm as in the analytical 
solution above, Ax = 0.08 mm, and A? = 0.01 ms. Zero flux boundary conditions were 
used in the simulation. Running the script will produce an animated solution of a spike 
that propagates from left to right as a result of initial depolarization at the left end of the 
axon. By changing the site of the initial depolarization it is possible to explore effects of 
initial depolarization at the axon center or at both ends at once (the spikes annihilate when 
they meet). The simulated action potential is compared with the analytical form for the 
leading edge in Fig. 15.6. The analytical solution is extremely accurate almost to the peak 
of the spike, where R (i.e. K+ conductance) truncates the simulated spike and leads to the 
recovery phase. Spike velocity in the simulation is 1.33 m/s, which is about 10% slower 
than the velocity calculated from (15.40). This is a consequence of the higher peak of the 
propagating wave in the analytical approximation, which is /? = 0.484 as compared to 0.36 
in the simulation. If v is calculated from (15.40) with h = 0.36 from the simulation, the 
result is v = 1.31 m/s, indicating that the overestimate of velocity indeed results from the 
greater maximum of Fin the analytical solution. 

In addition to producing traveling waves, such as action potential propagation, 
diffusion-reaction equations can spontaneously generate complex one- and two-
dimensional spatial patterns. The mathematical basts for this is similar to that underlying 
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Fig. 15.6 Simulation (15.33) for spike propagation compared with analytical solution (tanh) in (15.42). Both 

are moving to the right. 
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visual hallucinations (see Chapter 7). In diffusion-reaction systems, different diffusion 
length constants for different chemicals play roles analogous to different excitatory and 
inhibitory spread functions in equations such as (7.22). Many dynamical models of 
pattern generation during morphological development are based on diffusion-reaction 
dynamics, and these models explain how leopards get their spots, tigers their stripes, and 
butterflies their wing patterns. These aspects of diffusion-reaction equation theory are 
elegantly developed by Murray (1989). 

15.7 Compartmental models and dendritic spikes 

Our analysis of action potential propagation shows that nonlinear diffusion reaction 
problems are sometimes amenable to analytical treatment. More generally, however, 
nonlinear diffusion problems must be solved by numerical approximation. Complex 
dendritic trees contain not just synaptic currents but also a wide range of active, nonlinear 
Na+ and Ca2+ currents. To deal with such complex dendritic trees. Rail (1962, 1967) 
introduced what are known as compartmental models. Compartmental models are 
derived directly from (15.1) and (15.2) without passing to the limit A.v —> 0 that resulted in 
the diffusion equation. The result is a series of coupled ordinary differential equations in 
which time varies continuously but the spatial extent of dendrites is chopped into a finite 
number of discrete compartments of finite length, each of which interacts with the 
compartments adjacent to it. It is assumed that each compartment is sufficiently small so 
as to be approximately isopotential. Thus, the kih compartment of a dendritic tree would 
be described by an equation of the form: 

i rr A1' 

C -— = - J2h + Sk-\.k(Vk-i - F,) + gw+1( Vk+] - Vk) (15.45) 

where /, are the various ionic currents (synaptic, leakage, voltage gated, injected, etc.) 
passing through the membrane of the compartment. The two final terms in (15.45) 
represent the current flow or flux (see 15.1) into the compartment from the adjacent 
compartments, with gk-\,k andg^A+i being the respective conductances. Note that in this 
case the conductance can vary along a dendrite rather than being constant as was assumed 
above. Segev et al. (1989) describe in detail how a complex dendritic tree with multiple 
branches can be reduced to a compartmental model. 

To see what can be learned by implementing a compartmental dendritic model, let us 
consider the nature of active spike propagation from the soma back into dendrites. It has 
recently been shown that spikes initiated at the soma or axon hillock are actively pro
pagated back up the apical dendrite of hippocampal and cortical pyramidal cells (Stuart 
andSakmann, 1994; Magee and Johnston, 1995, 1997; Johnstone? ai, 1996; Stuart et ai, 
1997). These dendritic spikes result from the presence of voltage-gated Na+ channels in 
the dendritic membrane as well as in the axon hillock. Unlike axonal spikes, however, 
dendritic spikes decrease in amplitude as they propagate back up the dendrite away from 
the soma. In addition, dendritic spikes can apparently only be initiated at the axon hillock 
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but not in the dendrite itself (Stuart and Sakmann, 1994). Mainen et al. (1995) developed a 
compartmental model to study the nature of dendritic spike propagation, and the model 
developed below reproduces the key features of their model in simplified form. 

In developing a compartmental model, the first question must always be: how many 
compartments are necessary? Mainen et al. (1995) used approximately 275 compartments 
to simulate the dendritic tree of a particular rat layer 5 pyramidal cell. As this resulted in a 
model with approximately 1000 coupled nonlinear differential equations, it will be 
necessary to use a greatly reduced number of compartments here. Recently, Bush and 
Sejnowski (1993, 1995) have developed a method permitting as many as 400 compart
ments to be reduced to eight or nine, and in another context Destexhe et al. (1996) have 
shown that models with as few as three compartments can reproduce many results 
obtained with 230 compartments. Accordingly, let us develop four-compartment model 
to study dendritic action potentials. The model consists of a soma compartment (assumed 
to include the axon hillock) and a chain of three dendritic compartments as illustrated in 
the top inset in Fig. 15.7. Each compartment will be assumed to contain both Na + and K+ 
currents as described the cortical neuron equation (9.10). To further simplify, the con
ductances g between compartments in (15.45) will be assumed to all be identical; g = 4 
provides reasonably accurate results. Thus, the equations for the soma will be: 

— = - { 1 7 . 8 1 + 47.58Vi + 33.W]}(V] - 0 . 4 8 ) 
d? 

-26R](V] +0.95)+I+4(V2 - F,) (15.46) 

— i = — ( - Ri + 1.29F1+0.79 + 3.3(F, +0.38) 2 ) 

The soma (compartment 1) is only coupled to one dendritic compartment, so only one 
coupling term appears in the first equation. Note that coupling only occurs through 
current flux between compartments, so only the V] equation is coupled to the dendritic 
potential V2. 

In writing equations for the dendritic compartments, we must take account of data 
indicating that dendritic N a + channel densities are much lower than those at the axon 
hillock (lumped with the soma in the current model) (Mainen et ai, 1995; Stuart et ai, 
1997). Were it not for this important difference, the dendrites would be essentially 
identical to the axon hillock. Making the simplifying assumption that both Na+ and K+ 

conductances in the dendrites are 0.05 times those in the soma, the equations for the 
dendritic compartments become: 

^ = - 0 . 0 5 ( 1 7 . 8 1 + 4 7 . 5 8 F A - + 33.8F 2}(F t - 0 . 4 8 ) - \.3Rk(Vk + 0.95) + I 
dt 

+ 4 ( F , _ , - F , ) + 4 ( F , + 1 - F l . ) (15.47) 

^ - = — ( - / ? , + 1.29F, + 0.79 + 3.3(F, + 0.38)2) 
d? 5.6 

for k = 2,3,4 (the second coupling term being dropped when k = 4). 
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Fig. 15.7 Responses of four-compartment neuron (insert) described by (15.46) and (15.47). In the top panel 
stimulating current was delivered to the soma, while in the bottom the most distal dendritic compartment was 
stimulated. Compare with data in Fig. 15.8. 

The four-compartment model described by (15.46) and (15.47) comprises just eight 
differential equations and has been implemented in MatLab script ActiveDendrite.m. 
As shown in the inset in Fig. 15.7, the model may be stimulated via current injection either 
into the soma or into the most distal dendritic compartment. In both cases the current 
strength is / = 0.45 nA, and the current step lasts 23 ms. Results following stimulation of 
the soma are plotted in the top panel of Fig. 15.7, where the two curves show potential at 
the soma (V\) and in the distal dendritic compartment (F4). In this case an action 
potential is first elicited in the soma, and it subsequently propagates back up the dendrite, 
reaching the distal compartment 1.16 ms later. In agreement with experimental data 
reproduced in Fig. 15.8 (Stuart and Sakmann, 1994), the dendritic spike has dropped in 
amplitude to about 64% of that triggered in the soma. These figures for attenuation and 
latency are typically found at a distance of about 225 pm from the soma (Stuart and 
Sakmann, 1994), so setting the length of each model dendritic compartment to about 
75 urn produces good agreement with the data. 

A more surprising result occurs when the distal dendrite rather than the soma is sti
mulated. In this case, depicted in the bottom panel of Fig. 15.7, the distal dendritic 
compartment depolarizes first, but it reaches a plateau, and the action potential is again 
generated first at the soma. This somatic spike then propagates back along the dendrite 
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Fig. 15.8 Responses of a neocortical neuron to stimulation of the soma (top) or distal dendrite (bottom). 
Data reproduced with permission from Stuart and Sakman (1994), copyright Macmillan Magazines Ltd. 
Compare with simulation results in the previous figure. 

producing a subsequent dendritic spike. Thus, spikes are always generated at the soma 
(or axon hillock) regardless of where the neuron receives a depolarizing input. As shown 
in the bottom panel of Fig. 15.8, this is also true for neocortical neurons (Stuart and 
Sakmann, 1994). This counter-intuitive behavior results from the much lower Na+ and 
K conductances in the dendrites relative to the soma. When current is injected into the 
dendritic compartment, conduction along the dendrite occurs too rapidly for the low Na+ 

conductance to generate sufficient additional current to trigger a spike. Stimulation of the 
soma, however, produces a large Na+ conductance increase sufficient to trigger a spike, 
and this in turn triggers spikes in the successive dendritic compartments, albeit with 
attenuated amplitudes. 

To demonstrate the importance of dendritic Na channels in boosting the amplitude of 
spikes propagated back from the soma, it is possible to simulate effects of TTX appli
cation to the dendritic compartments as was done in Chapter 10. This results in a decrease 
in the amplitude of the dendritic F4 potential propagated from the soma by about 33%, 
which is similar to the decrease observed with experimental TTX application by Stuart 
and Sakmann (1994). 

In addition to elucidating the nature of dendritic spike propagation, this example 
demonstrates the theoretical importance of compartmental models. A single com
partment or equipotential neuron obviously could not provide any insight into ampli
tude attenuation of dendritic spikes. The fundamental conceptual importance of 
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compartmental models thus emerges when there are different nonlinear ion currents in 
different parts of the neuron, typically the soma and dendrite. In this case the separation 
of channels into different compartments becomes a fundamental factor in the nonlinear 
dynamics and emergent physiology of the cell. 

15.8 Plateau potentials and bistability 

The previous section demonstrated that compartmental models are crucial for under
standing certain aspects of single-cell physiology. Four compartments were used in the 
active dendrite model, and these provide results in reasonable agreement with the data of 
Stuart and Sakmann (1994) in Fig. 15.8 and with the 275-compartment model of Mainen 
et al. (1995). If the fundamental dynamical significance of compartmental models is 
indeed the separation of different ionic currents into different parts of the neuron, then it 
might be possible to study the dynamics of such current separation in a truly minimal 
compartmental model with just two compartments. This reasoning led Rinzel and col
leagues to develop a series of elegant two-compartment models for a variety of complex 
neural phenomena (Pinsky and Rinzel, 1994; Booth and Rinzel, 1995; Li et ai, 1996; 
Booth et ai, 1997). The basic anatomy of these models, consisting of a soma plus one 
dendritic compartment coupled by conductance gc, is illustrated in Fig. 15.9. One of 
the most fascinating of these models provides a dynamical analysis of plateau potentials 
and bistability in motorneurons (Booth and Rinzel, 1995; Booth et ai, 1997), so let us 
develop it here. 

For years it was believed that motorneurons did little more than receive synaptic input 
and send axons to muscle fibers, where arriving spikes produced contraction, thus 
functioning as the 'final common pathway' controlling muscle activity. More recently, 

v D 

Dendrite 

'Ca & >AHP 

Soma 
( N a & l K 

Fig. 15.9 A two-compartment neuron with ion channels distributed as indicated. The conductance between 
channels is gc. 



Diffusion and dendrites 273 

however, it has been discovered that individual motorneurons possess membrane prop
erties that provide them with a form of short-term memory! The basis for this is a Ca2 + 

current present in the dendrites that can be switched between a low or 'off state and a 
higher or 'on' state, the latter generating a plateau potential (Hounsgaard et ai, 1988; 
Elken and Kiehn, 1989; Kiehn, 1991). The Ca2 + plateau potential can be switched on by 
brief depolarization of the neuron, as is shown by the data from a cat spinal motorneuron 
in Fig. 15.10 (Hounsgaard et ai, 1988). Here brief depolarization sufficient to drive the 
neuron at a high rate results in continuing activity at a steady rate after the excitation has 
stopped. The ongoing activity continues until terminated by a subsequent hyperpolar
izing pulse. Thus, brief excitation can switch on a plateau potential that maintains a 
roughly constant depolarization of the neuron until actively inhibited. Eken and Kiehn 
(1989) have suggested that plateau potentials may function as a local motor memory while 
an animal maintains a stable posture. Such bistable firing behavior suggests that the Ca" + 

current dynamics of this neuron must generate a hysteresis loop of the sort studied in 
Chapter 6. 

The two-compartment model for plateau potentials incorporates four ion currents: 
the Na+ and K+ currents involved in spike generation in the soma, and /j-type Ca" + 

plus slow /AHP currents in the dendritic compartment (see Fig. 15.9). Coupling between 
the two compartments involves two factors: an intercompartmental conductance gc, 
and a factor p representing the proportion of total neural membrane in the soma. 
The factor p is important, because the dendrites typically have a significantly larger 
membrane area than the soma with the result that current exchange between the two 
compartments can have unequal effects. The equations for this two-compartment 
model thus become: 

d F Pr 
C — = - / N a - / K + / + — (VD- V) 

d? p 
d Fn ec 

CD — ~ = - / C a - /AHP + — (V- FD) 
d? p 

15.48) 

50 mV 

| l 0 n A 

5s 

Fig. 15.10 Effect of plateau potentials in a motorneuron (reproduced with permission. Hounsgaard et al, 
1988). A brief depolarizing pulse switches the neuron on, and firing is maintained until a hyperpolarizing pulse 
switches the neuron off again. Once switched on, the neural activity is self-sustaining due to depolarization by 
a plateau potential. 
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As with all compartment models, it is necessary to define a new potential variable FD for 
the dendritic compartment. Fhe actual equations used in the plateau potential model are 
derived from (9.10) for the Na+ and K+ currents and adapted from (10.5) for the Ca2 + 

and /AHp currents. The two equations for the soma are identical to (15.46) (except for the 
change in the coupling term to the form in 15.48), so only the equations for the dendritic 
compartment will be given: 

' ' " " - ( F D + 0 . 7 5 4 ) ( F D + 0 . 7 ) ( F D - 1.0) - gAHpC( VD + 0.95) 
dt 

+ -^-(V-VD) (15.49) 

~ = 4 ( - C + 0.5(FD+0.754)) 
d? 20 

Equation (15.49) has been constructed so that V = VD = -0.754 at the resting equili
brium state, which is asymptotically stable. These equations were obtained from (10.5) by 
shortening the time constants and substituting the equilibrium value of X into the FD 

equation. Fhis convenient approximation reduces the number of equations for the den
dritic compartment from three to two. 

Fhe script Plateau.m implements this two-compartment plateau potential model with 
parameter values p = 0.37, g c = 0.1,andgAitp = 1-0. Fhe results of a 75 ms current pulse 
to the soma (/ = 1.0 nA) followed 1.5 s later by a hyperpolarizing 75 ms pulse are plotted 
in Fig. 15.11. It is apparent that current flowing into the dendrite from the soma is 
sufficient to switch on the plateau potential, which then maintains a steady firing rate 
(12 spikes/s) until the hyperpolarizing off pulse. The key to this dynamical behavior is 
revealed by an examination of the dendritic (l'o,C) phase plane with isoclines from 
(15.49) (plotted for V = -0.754, its equilibrium value), which is plotted by Plateau.m. 
Fhe parameters in (15.49) guarantee that this plane will have three steady states: two 
asymptotically stable and one unstable. You might therefore expect that this neural 
model would exhibit hysteresis, and this is so as shown in Fig. 15.12. The dendritic 
hysteresis loop at the bottom shows the three steady states between soma currents A and B 
(spikes in the soma have been removed by simulated TTX blocking of Na+ channels as in 
Chapter 10). 

The spike rates generated by the neuron are plotted in the top of Fig. 15.12 under 
conditions of sustained current input to the soma. Between points A and B the neuron is 
bistable and will maintain firing at either a low or a high rate, depending on the previous 
history of stimulation. Fhis bistable firing pattern is also exhibited experimentally by 
neurons with plateau potentials (Hounsgaard et ai. 1988; Eken and Kiehn. 1989; 
Kiehn, 1991). 

The bistability of the dendrite that gives rise to a plateau potential results from the fact 
that the /AHP current has been reduced to the point where it can only partially counteract 
the inward Ca~+ current. If the conductance is increased to gAPH = 1-5, rerunning 
Plateau.m shows that the dendrite no longer has three steady states, and the plateau 
potential vanishes. There is evidence that plateau potentials require the presence of 
serotonin (Kiehn, 1991), and it was indicated in Chapter 13 that serotonin plays a role in 
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Fig. 15.11 Simulation of plateau potentials using the two-compartment neuron model in (15.48) and (15.49). 
Brief depolarization at On triggers a plateau potential in the dendrite that sustains firing by the soma until a 
brief hyperpolarization is delivered at Off. Compare with data in the previous figure. 

modulating /AHP currents in the lamprey. Thus, motorneurons can apparently be para-
metrically switched to and from a plateau potential mode via serotonin modulation. 

The dynamical explanation of plateau potentials as a result of dendritic hysteresis may 
now seem obvious, but one might question whether the use of a two-compartment model 
is necessary in this dynamical example. Booth and Rinzel (1995) showed that a two-
compartment model was indeed essential by a clever parametric manipulation. When 
gc = 0 in (15.48) the soma and dendritic compartments are entirely independent, so 
hysteresis in the dendrite obviously cannot affect firing in the soma. In the opposite case 
when the coupling conductance is large, such as gc = 1, any differences between Fand V-Q 
equilibrate so rapidly that the two compartments effectively become one electrically. 
Running Plateau.m with gc = 1 will show that both compartments produce spikes in this 
case, and there is no plateau potential. Furthermore, the dendritic phase plane now has 
only one steady state. This will be more obvious if the program is run with gc = 0.20. 
Coupling with the soma, approximated as being at equilibrium: V = -0.754, causes a 
bifurcation at which the plateau and unstable steady states of the dendrite vanish as gc 
increases. Thus, only intermediate values of the coupling conductance g c are capable of 
producing plateau potentials capable of driving spike generation, so separation of ionic 
currents into somatic and dendritic compartments is indeed essential to the dynamics of 
plateau-generating motorneurons. 
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Fig. 15.12 Effects of plateau potential in two-compartment motorneuron model. The top graph shows high 
and low spike rates generated between A and B depending on activation of the plateau potential. The bottom 
graph shows the hysteresis loop in the dendrite under simulated TTX to block spikes in the soma. Between A 
and B two asymptotically stable states exist separated by an unstable state (dashed line) 

15.9 How many compartments suffice? 

The elegant, two-compartment models of Rinzel and colleagues demonstrate that certain 
complex dynamical behaviors require partial electrotomc separation between the soma 
and dendrite. One need only define a second voltage variable and couple the compart
ments with conductance gc as in (15.48). So. two compartments are computationally 
efficient and sometimes necessary to explain neural dynamics, but are they sufficient? If 
not, how many compartments should one use? Compartmental models of single neurons 
range in size from two-compartments described by as few as four differential equations up 
to at least 400-compartments described by several thousand differential equations. 
Intermediate within this range is the CA3 hippocampal pyramidal cell model developed 
by Traub et ai (1994) comprising 64 compartments.1 The larger models provide much 
more detailed descriptions of single neurons but at a price: many of the parameters are 
unknown experimentally and can only be guessed or approximated, and the resulting 

The program NEURON by Michael Hincs( I9K9,1993) is freely available and recommended for detailed neural 
simulations involving large numbers of compartments. 
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system of differential equations is generally intractable analytically. Extremely large 
multi-compartment neural simulations are perhaps best viewed as 'virtual neurons' (in the 
spirit of'virtual reality') upon which to conduct virtual physiological experiments. On the 
other hand, two-compartment models represent a major simplification, but they are 
tractable and may capture the essence of neural dynamics. Indeed, Mainen and Sejnowski 
(1996) were able to adapt the Pinsky and Rinzel (1994) two-compartment model and show 
that the range of neocortical activity patterns could be generated simply by varying the 
parameter p (see 15.48). In general, it is a good strategy to use as few compartments as are 
necessary for understanding the problem at hand: small numbers for large network 
simulations, but larger numbers for detailed studies of one or a few neurons. 

15.10 Exercises 

1. Solve for the steady state of the cable equation (15.5) subject to the boundary condi
tions: F(0) = -60 mV and V(2D) = -20 mV. Plot V(x) for 0 < x < 2D. 

2. Assuming zero flux boundary conditions, generalize (15.24) to include sine wave terms. 
Write down the exact solution to the cable equation when the initial distribution is 
V — 2sin(7r.v/2) + sin(57r.v/2) - sin(97r.v/2). Produce an animation of this solution by 
modifying the script Diffusion.m. 

3. The temporal order of synaptic events can have a dramatic effect on the postsynaptic 
potential at the soma. To study this in a passive dendrite, modify Dendrite.m by setting 
NumPSP = 3 so that you can incorporate three postsynaptic potentials. Plot the time 
course for 10 ms of the following distribution of PSP locations and times (note that the 
first event in the program always occurs at ? = 0ms): 

(a)x = 40 pm,? = 0ms;.v = 70 pm, ? = 2ms;.v = 100 um, ? = 4 ms. 

(b).\= 100 um,? = 0 ms; x = 70 pm,? = 2ms;.v = 40 pm,? = 4 ms. 

(c).v = 100 pm,? = 0 ms; .Y = 100 pm,? = 2ms;.v = 40 pm,? = 4 ms. 

(d) x = 70 urn, ? = 0 ms; x = 70 um, ? = 2 ms; x = 70 um, ? = 4 ms 

Which sequence of synaptic events produces the maximum peak PSP? Which sequence 
produces the greatest mean PSP? How would you expect the spike rate of this neuron to 
differ in these two cases (assume the threshold is a PSP of 0.45)? 

4. The analytical solution for action potential propagation in (15.40) and (15.42) predicts 
that spike velocity will be directly proportional to the diffusion length constant D. Using 
the script Spike Propagate.m test this prediction for D = 0.4,0.2, and 0.1mm. Plot 
simulated velocity as a function of/) to determine whether the relationship is linear. 

5. The formula for v in (15.40) also makes an implicit prediction of the dependence of 
spike velocity on the Na+ equilibrium potential, £Na. This is because the height of the 
action potential, h, is mainly determined by £"Na (see Fig. 9.2). Assuming that 
h = 0.88£Na, which is the relationship in our analysis of (15.33), calculate v using (15.40) 
for £Na = 0.60,0.40, and 0.25 (i.e. 60, 40, and 25 mV). Fet D = 0.25 mm in each case. Plot 
your calculated velocities and compare with the results of simulations using Spike Pro-
pagate.m for these same values of £wa (-EWa = 0.55 in the script). 
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6. Cortical spreading depression is a phenomenon in which a wave of unusually high 
extracellular K+ concentration spreads across the cortex at a rate of several mm per 
minute. Grafstem (1963) proposed a quantitative biophysical model of this K+ wave that 
is described by the equation: 

T™=D2^+2K(2.3-K)(9.5-K) 
dt ox-

where K is the excess extracellular K+ relative to the resting state. The diffusion length 
constant is Z) = 0.02mm, and r = 0.5s. Solve this equation for the traveling wavefront, 
graph it, and calculate the velocity of propagation. Convert the velocity to mm/min. 
Cortical spreading depression is thought to be the cause of visual auras in migraine 
attacks, and these auras spread across the visual field at a rate equivalent to about 
3 mm/min on the surface of the visual cortex. How does your computed velocity compare 
with this9 

7. Reduce the four-compartment model for a neuron with active dendritic ion channels 
Na+ in (15.46) and (15.47) to produce a two-compartment Rinzel-type model with 
coupling between the soma and dendrite described by (15.48). Use/? = 0.33 (proportion 
of soma membrane), reduce dendritic ion conductances by a factor of 0.05 as in (15.47), 
and stimulate with /=0.2nA. Find a value of the intercompartment conductance g c for 
which the dendritic spike always occurs after the soma spike for either dendritic or soma 
current injection. Plot your results and compare with Fig. 15.7. 

8. Consider the following two-compartment model for a motorneuron: 
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These are based on canonical neocortical neuron equations discussed in the problems of 
Chapter 9. First show by simulation (you can adapt CanonicalNeuron.m from Chapter 9) 
that these equations exhibit plateau potential behavior for g c = 0.047,p = 0.48 (stimu
late with / = 0.05 for about 50 time units). Next, analyze the phase plane for the second 
two equations using the approximation that the soma remains at the resting potential 
V = 0. For what range of g c and p values can the dendrite sustain a plateau potential in 
this approximation? 



16 Nonlinear dynamics and brain 
function 

We have now completed our exploration of the dynamical foundations of neuroscience. 
Perhaps the most striking message to be taken away from this experience is that virtually 
all important aspects of neural function are inherently nonlinear. Action potentials and 
neural bursting are highly nonlinear limit cycle phenomena that cannot occur in a linear 
system. Motor control requires rhythmic oscillations that can be phase locked even in the 
presence of noise. This again is only conceivable in terms of limit cycle oscillations. At a 
higher cognitive level, categorization, decision making, and long-term memory are all 
inherently nonlinear phenomena related to the dynamics of networks with multiple 
steady states. 

Nonlinear neural networks with multiple steady states unavoidably exhibit bifurca
tions and hysteresis as inputs or parametric variations switch the system between states. 
The positive aspect of hysteresis is that once a bifurcation point is passed, neither noise 
nor a small reduction in relevant input can immediately switch the system back into the 
previous state. At the level of cognitive decisions, hysteresis permits the brain to ignore 
modest fluctuations in the evidence available to it. The alternative in complex circum
stances is perseveration and crippling indecision. Unfortunately, hysteresis inherent in 
neural decisions and memory can also have deleterious side effects. Depending on the 
range over which hysteresis operates, it can lock in judgments and categorizations based 
on partial and misleading early data. In short, hysteresis and generalization in neural 
networks can unfortunately lead to permanent storage of prejudices and bigotry based on 
early experiences with small samples. Such side effects of hysteresis may form one basis 
for the persistence of inappropriate social stereotypes. 

As implied by the relationship among hysteresis, bifurcation, and prejudice just sug
gested, the conceptual framework provided by nonlinear dynamics has a range of 
application that vastly transcends the neural topics to which this book has been devoted. 
Surely human interactions, controlled by nonlinear nervous systems, will produce large-
scale mirrors of nonlinear phenomena in the sociological realm. Thus, the foundations of 
nonlinear dynamics developed here would be expected to have application to a wide range 
of other scientific domains. This is manifestly true, and mention of salient examples will 
follow shortly. First, however, let us review the basic concepts of nonlinear neuro
dynamics to extract some general principles. This will lead to several guidelines on the 
inclusion of nonlinear dynamics in one's own research. Following this is a very brief 
survey of links between the nonlinear dynamics relevant to neural problems and dynamical 
issues in other fields. Finally, I shall close by posing the ultimate nonlinear dynamical 
problem: how can a nonlinear dynamical brain discover nonlinear dynamics? 
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16.1 Essence of nonlinear neurodynamics 

Throughout this book, certain themes in nonlinear dynamics have emerged repeatedly. 
To begin, let me remind you of the mathematical basis for our understanding of nonlinear 
phenomena. Looking back at the first chapter, two principles were emphasized: the 
exponential function and Taylor series. As promised there, the combination of these two 
principles may now be recognized as the basis of nonlinear dynamical analysis. The 
primary strategy throughout the book has been to first solve for the steady states and then 
linearize about each based on Taylor series expansion. The local stability of each steady 
state is then determined by the eigenvalues of the Jacobian. which are solutions of the 
characteristic equation. If the eigenvalues are imaginary, oscillatory sine and cosine 
solutions result. It is the properties of the exponential function which reduce differential 
equations to solutions of polynomials. These concepts, exponential functions with real or 
imaginary exponents and Taylor series, constitute the bedrock upon which much of 
nonlinear dynamics is founded. 

In addition, a number of geometrical principles have emerged that extend linearized 
analysis in important ways. The first of these we encountered was the Poincare-Bendixon 
theorem. Although limited to two dimensions, this elegant theorem can prove the exist
ence of limit cycles throughout the phase plane using inherently geometric and global 
considerations. The Hopf bifurcation theorem is also predicated on geometric con
siderations: a multi-dimensional system must decay onto a two-dimensional subspace 
within which limit cycle analysis becomes possible. 

Without doubt, the most intellectually sophisticated application of geometry to non
linear dynamics results from the theorems of Lyapunov. This brilliant mathematician 
realized that nonlinear dynamics could be understood by defining a landscape of hills and 
valleys where solutions to nonlinear differential equations descended to the lowest points. 
This is clearly the most global approach to analyzing nonlinear systems. Although the 
Lyapunov function approach has inherent difficulties associated with the creation of 
appropriate functions, I shall argue below that the geometrical interpretation of dynamics 
revealed by Lyapunov even provides insight into the inception of mathematics in the brain. 

Turning to those aspects of nonlinear dynamics of greatest relevance for neuroscience, 
several further principles have emerged. First, many neural problems have at least two 
widely different time scales associated with the dynamics. This has permitted us to analyze 
the fast variation with the slow assumed constant, thereby reducing the dimensionality 
and complexity of the problem. Neuronal bursting is a classical example of this, because 
the bursting is typically generated as the slower variable (e.g. Ca2+ current) sweeps the 
faster variables (e.g. Na+ spiking) back and forth through a bifurcation. 

Another very important observation is that neurodynamics almost always incorporates 
either sigmoid (e.g. Naka-Rushton or logistic functions) or cubic nonlinearities. (As the 
cube root is also sigmoidal, albeit without finite asymptotes, cubics are sigmoidal along 
the orthogonal axis.) Restriction to such a very small subset of all possible nonlinearities 
has enabled us to develop a comprehensive treatment of the dynamical foundations of 
neuroscience. Sigmoid functions and cubics share the important property that they can be 
intersected by a straight line in either one or three points, and this property underlies the 
existence of multiple steady states and hysteresis. 
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An interplay between positive and negative feedback constitutes the final key theme in 
neural dynamics. At the level of networks this takes the form of a balance between 
recurrent excitation and inhibition, as exemplified by the Wilson-Cowan (1972, 1973) 
equations. At the level of single neurons, positive feedback is exemplified by the voltage-
dependent opening of ion channels (e.g. Na+ or Ca2+) that cause further depolarization 
of the cell, while negative feedback is manifested by voltage-dependent channels pro
ducing hyperpolarization. In both cases the underlying dynamical characteristics are 
remarkably similar. Both networks and isolated neurons can produce limit cycles, and 
both can also produce hysteresis switching as witnessed by short-term memory circuits in 
networks and plateau potentials in neurons. Thus one might epitomize the dynamics of 
neuroscience as the nonlinear sigmoid dynamics of interacting positive and negative 
feedback pathways. 

16.2 Strategies for neural modeling 

As in any active and creative area of science, there are a vast range of strategies for 
attacking neural modeling problems. However, certain considerations and compromises 
are faced again and again. The first and most important consideration is the level of 
description of the neural elements. The alternative possibilities can be rank ordered in 
terms of increasing complexity. The simplest description of a neuron is certainly in terms 
of its spike rate as described by a Naka-Rushton or other sigmoid function. A more 
complex description is the isopotential neuron with multiple ionic currents that combine 
to produce individual spike outputs. However, as demonstrated elegantly by Booth and 
Rinzel (1995), firing patterns such as those involving plateau potentials require a two-
compartment model for their description. Two, of course, is the lower limit of com
partmental models, so the most complex descriptive level is the multi-compartment 
neuron, where multi typically ranges from 10 to several hundred. 

In choosing among these levels of neural description one is faced with a number of 
trade-offs. It is obviously possible to simulate 100 times as many neurons if the description 
of each involves just one differential equation rather than 100. In the opposite direction, 
increasing realism is certainly achieved in moving from a spike rate description to a two or 
more compartment model. This consideration might seem to push one towards the 
maximum number of compartments compatible with computer memory. However, 
neurons simulated with very large numbers of compartments suffer in two important 
respects. First, there are almost always far more parameters in these models than can be 
reliably estimated from the data available. Second, very high dimensional nonlinear 
systems become impossible to analyze mathematically, so the responses of huge com
partmental models frequently fail to provide any insight into underlying dynamical 
causes. Thus, simulations of very large compartmental models are probably best regarded 
as empirical experiments on 'virtual neurons'. As with experiments on any real neuron, 
one is also confronted here with the issue of whether the results obtained are generic as 
opposed to idiosyncratic. 

So, what is the best strategy for choosing a level of neural description? In part 
the answer is dictated by the problem: those wishing to simulate visual cortex or the 
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hippocampus will of necessity employ large numbers of neurons with the simplest possible 
description of each (probably spike rates), while those interested in the detailed ionic 
contributions to intracellular recordings will choose multi-compartment models. My bias 
is to choose the simplest possible description consistent with the data one wishes to explain. 
The striking success of the two-compartment model (Pinsky and Rinzel, 1994; Booth and 
Rinzel, 1995; Booth et al., 1997) in explaining not only plateau potentials but also the range 
of spiking patterns observed in neocortical neurons (Mainen and Sejnowski, 1996) sug
gests that it may seldom be necessary to move beyond this level of neural description. 

In keeping with the strategy of simplifying neural models as much as possible, one final 
point deserves mention. When a group of similar neurons are interconnected, it is fre
quently possible to represent their activity by that of a single neuron. We have seen 
examples of this subsampling technique in the Wilson-Cowan equations (1972, 1973) and 
in the lamprey simulations of Wallen et al. (1992). Thus, quite large neural network 
problems may frequently be reduced to manageable proportions. It is worth remembering 
that the goal of modeling complex neural systems is insight into the underlying compu
tational dynamics, and simplification is frequently crucial to insight. 

16.3 Nonlinear dynamics in other fields 

Spikes, decisions, and actions has focused exclusively on the nonlinear dynamical prin
ciples required to understand neural function. Despite this focus, virtually all of these 
mathematical principles find application in a wide range of other scientific fields. Fore
most among these is certainly physics, the science with the longest history of mathemat
ical sophistication. Two excellent books revealing the application of nonlinear dynamics 
to physics are From Order to Chaos by Kadanoff (1993) and Order within Chaos by Berge 
et ai (1984). 

Within biology, nonlinear dynamics has probably had its largest impact in neuro
science, due largely to the brilliant work culminating in the Hodgkm-Huxley (1952) 
equations. As a result, several other approaches to dynamics in neuroscience have also 
been developed. Books by Kelso (1995) and Haken (1996) both stress the importance of 
nonlinear dynamics in neuroscience, but both are slanted more toward approaches 
introduced in statistical physics, so they provide complementary treatments to Spikes, 
decisions, and actions. 

In addition to neuroscience, dynamical approaches are now common in many areas of 
biology including ecology, cardiac rhythms, and developmental pattern formation. 
Excellent surveys of dynamical approaches in these areas are provided in books by 
Edelstein-Keshet (1988), Glass and Mackey (1988), and Murray (1989). To cite one 
example, Murray (1989) provides an elegant treatment of the ways in which nonlinear 
diffusion-reaction equations can generate the patterning of spots on leopards or the 
designs of butterfly wings. These turn out to be examples of self-organizing systems with 
similar dynamical principles to those underlying visual hallucinations in excitatory-
inhibitory networks (Ermentrout and Cowan, 1979). 

Dynamical modeling has even been fruitfully employed in sociology. Kadanoff (1993) 
studied nonlinear interactions of factors mediating the growth and decay of urban 
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centers. There is currently also evidence that political and economic decision making can 
exhibit chaotic dynamics (Richards, 1990). It is also likely that dynamical models of 
species interactions in ecology will be relevant to understanding sociological interactions. 

Finally, I think it is now becoming clear that nonlinear dynamical concepts are central 
to issues in both psychology and philosophy. As we have seen, perceptual categorization 
and decision making receive a natural explanation in terms of bifurcations in competitive 
networks. Furthermore, the existence of neural chaos is clearly relevant to discussions of 
free will and determinism, as chaotic systems are deterministic without being predictable. 
Recent evidence for chaos in perception (Richards et ai, 1994) is certainly germane to this 
issue. Several thoughtful evaluations of the significance of neural network models for 
philosophy are available in books by Churchland (1989), Bechtel and Abrahamsen 
(1991), and Clark (1989). This should emphasize that nonlinear concepts provide an 
indispensable qualitative framework for exploring a vast range of phenomena. 

16.4 Mathematics in mind 

Exploration of the dynamical principles underlying brain function leads finally to the 
ultimate question in nonlinear dynamics: how is it possible for the brain to create and 
understand mathematics? Otherwise stated, what sort of nonlinear neurodynamical 
system or 'mind' is required to instantiate mathematics? This may seem an impossibly 
complex question, and neuroscientists are certainly only beginning to nibble at its edges. 
Nevertheless, some promising directions for conceptualizing the broad outlines of an 
answer are beginning to emerge. 

In his eminently readable book, The Number Sense: How the Mind Creates Math
ematics, Dehaene (1997) provides a concise summary of research on the brain and 
mathematics. One fundamental observation is that all mammals show an ability to dis
criminate relative magnitudes that is similar to the average human who has not been 
trained in basic arithmetic. Mammals will consistently discriminate 2 from 3 food pellets 
or 10 from 15, although they will confuse 10 and 11. In short, mammals appear able to 
discriminate quantity on a scale where equal increments are scaled logarithmically. This is 
not surprising, as virtually all sensory systems convey information concerning the mag
nitude of relevant stimuli (e.g. brightness, loudness, pressure, etc.), but they do so 
in accord with Weber's law, indicating an approximately logarithmic neural code for 
stimulus intensity. 

To explore the next steps in the evolution of mathematical capabilities it is necessary to 
make a very important evolutionary observation. The invention of mathematics by the 
human brain is certainly no older than the invention of writing, which occurred first in 
Mesopotamia around 3000 B.C. and perhaps independently in Egypt around the same 
time (Diamond, 1997). Furthermore, throughout world history until perhaps the past 
half-century, the vast majority of the world's population has been both illiterate and 
innumerate. Thus, there has neither been the time (only about 250 generations) nor the 
evolutionary pressure for an explicit mathematical or reading capability to have evolved 
in the brain (Donald, 1991). Strikingly, the earliest writing systems evolved from simple 
accounting systems, that is from records of numbers; prose writing arose much later 
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(Diamond, 1997). Given the obvious fact that I can write and you, the reader, can 
comprehend the material in this book, only one plausible possibility remains. Math
ematical (and reading) capabilities must have arisen as a byproduct of evolutionary forces 
that optimized certain brain areas for other functions. 

Current evidence suggests that mathematical abilities are associated with the evolution 
of eye-hand coordination and the manipulation of objects. There is much evidence, for 
example, that both counting and the language of numbers are closely related to enu
meration of fingers and other body parts. Thus, all children begin counting by associating 
objects with their fingers, and in certain societies body parts including toes, elbows, wrists, 
and knees are used to count up to about 30 (Dehaene, 1997). The link with language is 
witnessed by the fact that in at least one language the word for 10 literally means 'two 
hands'. 

A relationship between the visual manipulation of objects and the evolution of 
mathematical ability is suggestively conveyed by recent studies of brain activation during 
mathematical thinking. A PET (positron emission tomography) study has shown that 
parts of human parietal cortex are most active during mental division (Dehaene et ai, 
1996). In a second study, direct recording from parietal neurons in humans via electrodes 
implanted for medical reasons showed major activation of parietal area 7 in mental 
addition and subtraction (Abdullaev and Melnichuk, 1996). This is consistent with evi
dence that damage to inferior parietal cortex can produce major deficits in numerical 
abilities, termed 'acalcula' (Dehaene, 1997). These same studies also demonstrate that 
mathematics is not a language in any ordinary sense: subjects with brain damage leading 
to acalcula can still retain completely normal language abilities. Far from being a lan
guage, mathematics represents a thoroughly independent and powerful mode of brain 
function! Fhis conclusion is also supported by the dissociation between linguistic and 
mathematical-spatial abilities in the human population. Relative to their percentage in 
the population, left-handers are twice as highly represented as right-handers among the 
most creative individuals in fields requiring mathematical or spatial reasoning abilities 
(e.g. Newton, Einstein, Da Vinci, Michelangelo, Picasso). However, lefties on average fall 
below their dexterous counterparts in linguistic abilities. 

Neurophysiological studies of parietal cortex in monkeys indicate that it contains a 
number of distinct areas that are collectively involved in perception of motion and surface 
orientation, and the visual guidance of object manipulation (Milner and Goodale, 1995; 
Sakata et ai, 1997). In fact, there is both physiological and clinical evidence that separate 
subdivisions of the parietal cortex subserve vision of peripersonal space (i.e. space within 
reaching distance) and extrapersonal space (Sakata and Kusonoki, 1992; Cowey et ai, 
1994). Neurons in these areas are involved in both the visual and tactile (somatosensory) 
perception of motion, position, and surface orientation in three dimensions. Clearly, any 
cortical area devoted to both vision and touch could only correlate such information 
within peripersonal space. To carry out their functions normally, parietal areas must 
perform multiple vector summation and subtraction operations in order to compute both 
direction of motion and the location of the hand given only joint angle information, and a 
neural network capable of carrying out these computations was analyzed in Chapter 7 
(Wilson et ai, 1992; Wilson and Kim, 1994). Furthermore, many visually guided object 
manipulations are voluntary actions, so some aspects of parietal neural activity must be 
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accessible to or even a component of consciousness. This is manifestly true for humans 
and is probably true for great apes as well. 

The mathematician Hadamard (1945) argued that mathematical thought was primarily 
visual and kinematic in nature, and reflection on the contents of Spikes, decisions, and 
actions reveals the striking degree to which our understanding of nonlinear dynamics 
relies on spatial visual concepts. Thus, phase plane analysis clearly involves visualization 
of vector flow fields in two dimensions, and Lyapunov function theory shows that non
linear differential equations are intimately associated with surfaces in multi-dimensional 
spaces. Even chaos requires a visual appreciation of the fact that three dimensions are 
required for a trajectory to wander about in a bounded region without ever coming to rest 
or intersecting itself. Finally, three major discoveries in the history of mathematics reveal 
the spatial aspects of abstract mathematics: the Pythagorean theorem, the discovery of 
conic sections by the Greeks and the invention of analytical geometry by Descartes. The 
Pythagorean theorem was believed by Herodotus (450 B.C.) to have been inspired by the 
practices of Egyptian surveyors using 3-̂ 4-5 rope triangles to create right angles. Ana
lytical geometry showed that the solutions of simultaneous algebraic equations could 
be viewed as intersections of lines or surfaces in space. Regarding conic sections, I am 
reminded of an episode that occurred when I was an undergraduate at Wesleyan 
University. Rich Young, a blind classmate and mathematics student, asked a group of us 
one day why parabolas, ellipses, circles, and hyperbolas were called conic sections. 
Someone quickly made a cone from a sheet of paper and let Rich feel the different ways in 
which he could grasp the cone with his fingers. An instant smile of recognition spread 
across his face as he saw the concept with his hands! Recall that parietal cortex integrates 
both visual and tactile information. 

Further confirmation of a correlation between visually guided manipulation and 
mathematics comes from studies of gesturing during conversation. McNeill (1992) 
videotaped conversations about abstract mathematics carried on by two professional 
mathematicians. The striking result was that spatially meaningful hand gestures were 
almost perfectly correlated with the verbal expression of certain abstract mathematical 
concepts. Even more striking, there were cases of verbal errors when the hand gesture was 
nevertheless mathematically correct! Thus, the hand gestures represented a more accurate 
reflection of mathematical thought than did words. 

In sum, therefore, mathematical ability seems to rest on two fundamental aspects of 
brain function. The simpler is a general appreciation of relative quantity, which is ubi
quitous in mammalian sensory perception. Our nascent understanding of deeper aspects 
of mathematics indicates that they are localized in parietal association cortex. These 
cortical areas, which combine visual and somatosensory information, are also involved in 
vector computations related to eye-hand coordination, the perception of surfaces, and 
perception of motion in depth. Such vector-based computations are both inherently 
spatial and incorporate addition and subtraction as special cases. As these networks also 
appear capable of categorical decision making (e.g. coherent versus transparent motion, 
see Chapter 7), these cortical areas can create precise perceptual dichotomies. It is not 
inconceivable that more abstract dichotomies, equal-unequal, true-false, might also 
arise in such neural networks. Granted evolving capabilities to reflect consciously on 
visually guided manipulation within peripersonal space, we can thus begin to envision 
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(metaphor intended) the emergence of mathematical abilities in nonlinear dynamical 
networks of the parietal cortex. 

Understanding of mathematical ability and a great many other aspects of brain 
function awaits decades of future research. This research will certainly be accompanied by 
the development of more sophisticated mathematical tools for studying neural networks. 
Nevertheless, I think it reasonable to suggest that the nonlinear dynamical principles 
which will form the foundations of that understanding are largely available today. 



Appendix: MatLab™ and the MatLab 
scripts 

This appendix contains a very short introduction on the use of MatLab™ to run the 
simulations accompanying this book. It is assumed that the reader is already familiar with 
MatLab basics, at least at the level of the tutorials provided in the MatLab manual. The 
disk is readable by either Macintosh or Windows computers and contains two folders of 
MatLab scripts: Mac MatLab, and WinMatLab. The scripts in the two folders are 
identical except for a few differences in text formatting required by the two different 
operating systems. The appropriate folder should be copied onto the reader's hard disk 
so that all examples can be worked using these copies. That way, should you make any 
changes that prevent the script from working properly, you can always make another 
copy of the original. The disk with this book has been locked to prevent modification 
of the original scripts. MatLab is also available to run under UNIX, but I have not 
tested the scripts in a UNIX environment. Most scripts should run under the student 
version of MatLab. However, several of the scripts later in the book may require vectors 
longer than the student version permits. This was unavoidable in order to demonstrate 
some points concerning more complex neural networks. Also, some of these scripts may 
take several minutes to run even on a Macintosh G3. This was again unavoidable due to 
the necessary size and length of certain simulations. 

The MatLab scripts were created on a Macintosh and then translated using TransMac 
under Windows NT. TransMac under Windows correctly maintains file name case and 
length and properly translates end-of-line and end-of-file conventions. From Windows, 
correctly configured contemporary copying mechanisms to and from UNIX all imple
ment these conventions correctly in both directions. These include Samba, modern ftp 
clients, and modern zipping utilities, including gzip on the UNIX side and Winzip 7.0 on 
the NT side. In translating the files for UNIX, it is crucial that file names and letter cases 
be retained for the scripts to work properly. 

Users of the WinMatLab directory on either Windows or UNIX may see directories 
named Resource, frk and files named Finder.dat. These support the production of a single 
diskette which can be read either by Macintosh or Windows machines, and may be safely 
ignored in those environments. Note that many scripts produce several figures in different 
windows, and each must be moved to the front for viewing (see MatLab manuals). Please 
check the book web site http://spikes.bsd.uchicago.edu for current information con
cerning the MatLab scripts and to report any problems. 

Each MatLab script is designed to be run by the reader to verify assertions at appro
priate points in the book. Following this, it is expected (and suggested at points in the text) 

http://spikes.bsd.uchicago.edu
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that the reader will modify the scripts to solve problems at the end of chapters and 
hopefully also to begin to explore neuroscience problems related to her/his own interests. 
As acquaintance rather than expertise with MatLab is all that is expected of the reader, the 
points where mathematically appropriate modifications should be made are generally 
contained in statements between two lines of asterisks. This makes it rather easy to find 
and make the suggested parameter changes. 

Note that many of the scripts provided generate several windows, which MatLab may 
plot on top of one another. All windows can be viewed successively by using the Windows 
menu, however. 

Among the MatLab scripts is a folder entitled 'Basic Scripts'. This contains a very 
simple plotting program that will be adequate for any of the earlier problems in the book. 
It also contains the basic programs for finding the zeros of a transcendental function as 
outlined below. 

Three MatLab functions that will be of general utility are fzero(), roots(), and eig(). 
Their functions are most easily understood through the following examples. 

The function fzero() finds the zero of a function that is closest to an initial guess pro
vided by the user. Suppose, for example, that it was necessary to solve the following 
transcendental equation: 

10 

1 + e -.v+5 

This type of problem is fairly common in certain neural network formulations. This can 
be converted into a form suitable for use with fzero by moving both terms to one side: 

10 

The left side has been entered into the MatLab function script TransZero.m, which is in 
the Basic Scripts folder. The use of fzero to call and solve this function is implemented by 
the script Zero Finder.m If this script is run with a range of initial guesses 0<.v<20, 
three distinct roots will be found. Fo solve other transcendental equations, TransZero.m 
must have the appropriate function entered and must then be saved in the same folder as 
Zero_Finder.m. 

The roots() function is very simple to use and may be run from the Command window. 
It finds the roots of a polynomial expressed as a coefficient vector beginning with the 
coefficient of the highest power of the unknown. Suppose you wished to know the roots of 
the equation: 

5.v3 - 2.v2 + 7 = 0 

The coefficient vector in this case would be written in MatLab syntax as [5, -2 ,0 , 7], Note 
that every coefficient must be included; the 0 indicates that the coefficient of x is zero. 
Typing the command roots([5, - 2 , 0, 7]) and hitting the carriage return will produce a 
listing of the roots, which are -1 and a complex conjugate pair in this case (try it). 
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The eig() function returns the eigenvalues of a square matrix if they exist. In MatLab 
syntax, the following matrix: 

would be written as: A = [0,1,2; 3,2,1; 1,0,5]. Note that commas separate entries within a 
row, while semicolons separate the rows. Now the command eig( A) will generate the three 
eigenvalues, the first being -1.2073. 

MatLab simulations are described in the chapter where they are first used along with a 
brief indication of how they should be used. Frequently one of the chapter figures was 
generated by the script being discussed, which should provide a cue to the expected MatLab 
results. However, two of the more general and complex scripts deserve brief mention here. 

LinearOrder2.m prints out analytical solutions to autonomous, second order homo
geneous linear differential equations for any specified initial conditions. This program 
automates the solution of second order equations and will be useful throughout the book. 
The user is prompted for the coefficients of the Jacobian matrix and for the initial con
ditions. In the special and highly improbable case where both roots are identical (critical 
damping), the solution is printed for x(f) only, on the assumption that the second variable 
and initial condition relate to dxjdt. This program should not be modified'by the user. The 
program plots both the temporal solutions x(t) and y(t) and the x—y trajectory in the state 
space (except for critical damping). The small arrows in the state space plot indicate the 
direction of local trajectories throughout the space. 

RungeKutta4.m implements a fourth order Runge-Kutta routine with constant step 
size for a system of any order. The reader must modify the line indicating the number of 
equations N, the time step DT, and the entries in the initial condition vector. Most 
importantly, the reader must type in each equation using as variables for the right-hand 
side XH(1), XH(2), XH(3),.. . , XH(N). For example, the FitzHugh-Nagumo equations: 

10( V- — -R + Iiaput 

— = -0.8/X+ F + 1.2 
d? 

would be written as: 

K(l, rk) = 10*DT*(XH(1) - (XH(l)A3)/3 - XH(2) + Input); 

K(2, rk) =DT*(-0.8*XH(2) + XH(1)+ 1.2); 

The variables on the left-hand side, K(l, rk), etc., are the intermediate Runge-Kutta 
variables in eqns (5.26), (5.29), and their generalizations. The second argument, rk, 
indexes which of the four intermediate values is being calculated by the loop. All simu
lations suggested in the problems can be performed by appropriate modification of 
RungeKutta4.m. As the book progresses, however, many simulations can be carried out 
more easily by modification of scripts introduced in each chapter. Virtually all neural 
simulations in the book are based on this fourth order Runge-Kutta routine. 
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abstraction, levels of 3-5, 221, 281 
action potential 10, 261, 263, 267, 268, 270 
adaptation 81, 131-34 

spike frequency 156-59, 209, 218 
afterdepolarization 163, 168; 

see also postinhibitory rebound 
afterhyperpolarization 156-9, 208, 219 
afterimages, negative 102-3 
alpha function, synaptic 191-2, 197 
amplification, cortical 110 
anode break excitation 194 
antiphase locking 190, 193, 210, 211, 220 
asymptotic stability 37, 117, 227, 229, 246 
auditory neurons 145 
autoassociative network 239, 247, 248 
autonomous system 11 
axon 10, 237, 247 

bifurcation 80-1, 144, 160, 181,248,283 
saddle-node to limit cycle 148, 149, 156, 

158, 169,210 
see also Hopf bifurcation 

binocular rivalry 133 
boundary conditions 254, 257-8 
bursting 

endogenous 164 
neural 161-9 
parabolic 165-6 
taxonomy of 170-1 

CA3, see hippocampus 
cable equation 251,253, 259; 

see also diffusion equation 
capacity, memory 240 
cascade of equations 17-19 
catastrophe and bifurcation 84 
categorical decisions 97, 285 
center 38^40, 235 
central pattern generator 205, 220-1 
chain rule 63 
chaos 173-80, 183-4,282,283 
characteristic equation 29, 32, 49, 50, 51 
Clione 193-5, 220-1 
Cohen-Grossberg theorem 244-6 
command signal 205 

compartmental models 
as 'virtual neurons' 275, 281 
of neurons and dendrites 268-71, 281 
two compartments 272-4, 276, 281 

conductance 22 
conic sections 285 
conservation of energy 232, 235 
conservative oscillation 235 
conservative systems 232-6 
constant of motion 234, 235 
convolution 15, 43, 45 
cortical network model 103-12 
cosine weighting 94, 98 
creativity 184 
critical damping 40-3 

decisions 85, 283 
deja vu 239 
delay, synaptic 188, 189 
dendrite 9, 251, 254-6, 259-61 
dendritic spikes 268-71 
determinism 184,283 
development, retinal 112 
diffusion equation 251-61 
diffusion-reaction equation 262-3, 266-8, 282 
Dirac 6 function 58, 260 
direction repulsion in motion 97 
domain of attraction (or asymptotic 

stability) 227-9, 243, 245 
dynamical diseases 57 

eigenvalues 32-3, 49, 226, 288 
eigenvectors 33-4 
electroretinogram 18 
epilepsy 112, 202 
equilibrium point 22, 31, 73, 227, 263; 

see also steady state 
equilibrium potential 22, 191 
equivalent cylinder model of dendrites 254, 259 
errors in simulations 65-7 
Euler's formula 8 
Euler's method 60-2, 65 
evolution 283^4 
excitation, recurrent, see positive feedback 
exponential function 5-6, 13, 280 
eye movements, saccadic 42-3 
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first return map 177-8, 180, 182 
FitzHugh- Nagumo equations 123-5, 135, 263 
flux 252, 254-5. 258 
forcing function 43 
Fourier 

analysis 251, 256, 259 
power spectrum 177, 180 
transform 108, 177 

free-will 184,283 
frequency division 151 

GABA23, 120,201,261 
gain control 73-4, 86, 229 
gaits, quadruped 216, 217 
gamma function and delays 58 
generality, levels of; see abstraction 
generalization 239, 243 
gesture and mathematics 285 

half-center, oscillator 209 
hallucinations, visual 112-15, 268, 282 
Hebb synapse 236-8, 247, 248 
heteroclinic trajectory 263 
Hindmarsh-Rose model 147, 171, 185 
hippocampus 236-40, 246, 247-8, 282 
Hodgkin-Huxley equations 1,2-3, 123,136-42, 

144, 147, 159, 180-3,263,266 
and chaos 180-3 
hysteresis in 142-3 

homogeneous equation 14, 36, 44 
Hopf bifurcation 

subcritical 129, 143-4, 149, 156, 161 
supercritical 129, 210 
theorem 126-9, 167-8,280 

Hopfield network 245 
human neurons, see neurons, cortical 
hysteresis 79-81,92, 142-1, 159-60,273,274-5, 

279 

identity matrix 32 
inhibition, recurrent, see negative feedback 
inhibitory feedback, see negative feedback 
inhibitory synchrony 196-8, 202 
inhomogeneous equation 14 
inhomogeneous steady state, 

spatial 106-9, 113 
initial conditions 14, 29, 174-5, 178 
instability 37, 117.229 
integro-differential equation 107-8 

ton currents 
calcium 161-2, 164-5, 199, 201, 273 
potassium 27, 136-7, 139, 147, 156-7. 

161,269 
separation in dendrites and soma 271-2, 

275-6 
sodium 27, 136-7, 139, 154, 164, 268-9 

isocline 73, 82-3, 138, 140 
isopotential neuron 192 

Jacobian matrix 75, 76, 79, 85, 126, 142, 167, 
197,213,280 

lamprey swimming 134, 205-11, 220, 221, 282 
lateral geniculate nucleus 198-202 
learning 237, 240, 248 
length constant 253. 254, 261 
light adaptation 98, 101-2 
limit cycle 117-20. 122-3, 124-5, 131-2, 139, 

181,247,248,279 
Lorenz equations 175—6 
Lotka-Volterra equations 233-5 
Lyapunov 

exponent 178-80, 182 
function 128. 226-9. 231, 235, 241-3. 244, 

245, 248, 249. 280, 285 

manipulation of objects 284-5 
Marroquin figure 133-4 
mathematics 

and language 284 
and the brain 283-6 

MatLab™, use of 287-9 
MatLab™ functions 

eig()288 
fzero() 287-8 
roots() 288 

MatLab™ scripts and programs 
BinocRivalry.m 133 
CA31earning.m 240 
CA3memory.m 239-40, 246 
CanonicalNeuron.m 155, 278 
CG_Lyapunov.m 245, 250 
ChaosTester.m 
Chattering.m 168-9, 170 
ChatteringHopf.m 167 
Clione.m 193-5,203 
Dendrite.m 260-1. 277 
Diffusion.m 259, 277 
DivFBm76 
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DynamicMemory.m 247, 250 
EPSPinteractions.m 192, 196,202 
Equilibrium.m 31, 34 
EquilibriumWC.m 123 
Euler.m 71 
FBdelay.m 130 
FitzHugh.m 125, 184 
ForcedChaosTester.m 182 
GG.ml38 
Hallucinations.m 113 
HHburster.m 159 
HHhysteresis.m 143 
HHnoise.m 146 
HHRinzel.m 138 
HHWchaos.m 181 
HHWeqn.m 140, 143. 144 
Hopf.m 53-4, 57 
HumanNeuron.m 147, 150 
IPSPtnteractions.m 192, 196, 198,203 
IsoclineMovie.m 83 
Lamprey.m 209-11 
LampreyTurn.m 215 
LGN2cell.m 200-1, 204 
LGNsynchrony.m 201, 204 
LinearOrder2.m 34, 36, 38, 76, 86, 288-9 
Lorenz.m 175, 177 
LotkaVolterra.m 235, 250 
LyapunovCA3.m 242 
LyapunovExpt.m 179, 184 
LyapunovFB.m 231 
LyapunovHHW.m 181 
Make_Spikes.m 209 
MLburster.m 172 
MM.ml38 

Morris_Lecar.m 154, 155 
Motion_Demo.m 93^4 
PhaseShift.m 151-2 
PlantBurster.m 163-5, 171 
PlantBursterTTX.m 165 
Plateau.m 274, 275 
RegularSpiking.m 158, 170 
Retina.m 102-3 
Routh_Hurwitz.m 53-4, 57, 130 
RungeKutta4.m 69, 70-1, 289 
RHchatter.m 167 
Spike_Propagate.m 267, 277 
STMadapt.m 83 
Swimming_Lamprey .m 206, 211, 215 
TransZero.m 288 

Tritonia.m219, 222 
VanDerPol.m 127 
VectorWTA.m 95-6 
WCcortexAT.m 110 
WCcortexOSC.m 110 
WCcortexSTM.m 106 
WCcortexWAVES.m 112 
WCequilib.m 123 
WCoscillator.m 123 
WCstability.m 108 
WTA2.m 85 
WTA5Neurons.m 90 
WTAadapt.m 131 
ZeroFinder.m 288 

memory 
long-term 236-40 
short term 77-9, 83, 106-7, 195, 239, 

248, 273 
see also hippocampus 

migraine auras 278 
morphological development 268 
Morris-Lecar equations 153—4, 155, 172, 188 
motion 

perception 93-7 
transparency 93, 97 

muscle contraction 40-3, 184-5 

Naka-Rushton function 19-21, 79, 100, 105, 
121,208,244,245,280 

Necker cube 133 
negative definite function 226, 231, 241 
negative feedback 35-7, 54-8,129-31,199,201, 

237,238,240,246,248,281 
Nernst equation 22 
neuromodulation 99, 103, 208, 210. 211, 220 
NEURON computer software 276 n. 
neurons 

anatomy of 9-10 
chattering 162, 167, 169 
Class I 149, 156 
Class II 149, 156, 161 
cortical 147-50, 162 
dynamical taxonomy of 169-70 
fast spiking 149-50, 159, 167, 169 
intrinsic bursting 169 
regular spiking 149-50, 156-9, 169 

neutral stability 37 
NMDA receptor 237 
node 38-9 



306 Index 

noise, physiological 145, 239 
normal form 29-30, 46, 68 
nullcline, see isocline 

Ohm's law 22, 136, 137, 139,254 
oscillation 52-3. 110-11, 116,201,235 

perceptual 131—4 

retino-cortical mapping 113-14 
reversal potential 22, 23, 191 
Rinzel approximation 137-8, 161 
Routh-Hurwitz criterion 50-3, 130 
Runge-Kutta Method 

constant step size 62-5, 67-9, 102, 289 
variable step size 69-70 

parietal cortex and mathematics 284-6 
path integration 92-3 
peri-geniculate nucleus 198-202 
period of oscillation 116 
phase 

locking 187, 190,202,213 
shift 151-3 

phase oscillator model 186-90, 192, 197-8,202, 
203,211-13,216-17,221 

phase space 37-40, 122, 125, 148. 194-5, 209, 
234, 264-5, 285; see also state space 

philosophy 283 
physics 282 
plateau potentials 273-6, 281 
Poincare-Bendixon Theorem 119.123,126,142, 

173,209,280 
pop-out 89 
population code 96 
positive definite function 224, 226, 230, 231, 

243, 249 
positive feedback 103-12, 120-3, 208, 209-10, 

211,219,220.237,248,281 
positron emission tomography (PET) 284 
postinhibitory rebound 194-5, 199-201, 220 
postsynaptic potential 22-6, 191, 194 
predator-prey interactions 233 
prediction by nonlinear models 142-3, 195 
prejudice 279 
propagation of action potentials 263-7 
protean behavior 184 
psychology 283 

quadruped locomotion 215-17 
quasi-linear equation 30 

Rail's dendritic theory 254-6 
resonance 

stochastic 146 
subharmonic 150-1 

respiration 53-4 
retina 35-7, 98-103 

saddle point 38-9, 91,243 
separation of variables 256-7 
serotonin 208, 210-11. 220, 274 
shunting inhibition or synapse 26, 229 
sleep, deep 198-9,201 
sociology 282-3 
spike, see action potential 
spiral point 38-9 
spreading depression, cortical 278 
state function 223-4, 226 
state space 37-40, 131-2, 138-9, 152, 164; 

see also phase space 
steady state 22, 31, 73, 253-4. 274, 280; 

see also equilibrium point 
stochastic resonance, see resonance, 

stochastic 
strategies for modeling 276-7, 281-2 
subsampling 90, 120, 208, 282 
swimming, neural control of 193—4, 205, 

211-12,214,218 
synapse 9, 190-2,194, 197. 239. 247,248,260-1; 

see also postsynaptic potential 
synchrony 187, 196, 198-9, 201. 202 

Taylor series 7-8,61, 62, 65, 67, 266, 280 
thalamus 198-202 
time 

constant 13, 253 
delays or lags 54-8, 129-31, 201, 247-8 
series analysis 176 

trajectory 37, 174, 179, 225. 226, 227, 228, 232, 
233, 235, 264 

quasiperiodic 173, 174, 177 
traveling waves, see waves, traveling 
Tritonia 217-20, 221 
TTX (tetrodotoxin) 162,163,164,169,171,172, 

271 

van der Pol equation 30, 127, 226 
variation of parameters 44-5 
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vector summation 92-8, 284, 285 Wilson-Cowan 
visual search 88-9 cortical equations 103 12, 281, 282 

o s c i l l a t o r 1 2 0-3- 135- 188, 208, 209-10, 282 
waves, traveling 111-12, 202, 211-14, 262, 264 w l n n e r . t a k e „ a ] 1 n e t w o r k ^ 8 8 ^ 98_ 2 4 8 

web site viii 
Weber's law 283 
Wesleyan University 285 zero flux boundary condition 258 







decisions 4 • actions 
The nervous system of higher animals is very complex and highly 
nonlinear. Among its many capabilities are making decisions and 
carrying out complex motor actions such as swimming. Nonlinear 
dynamical modelling can be used to understand and explain neural 
phenomena at many different levels, including: 

• ion currents and action potentials 
• short- and long-term memory 
• visual hallucinations 
• neural synchronization 
• motor control 

This book explores the mathematical principles by which brains 
generate spikes, make decisions, store memories, and control actions. 
It assumes a basic knowledge of calculus and develops the dynamical 
foundations of neuroscience using problem sets and computer simula
tions on the accompanying PC and Mac compatible MatLab™ disk. 

Spikes, Decisions and Actions is an ideal text for courses in 
computational neuroscience, neural modelling, and nonlinear modelling 
in biology. 
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